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 In this paper, kinematic and dynamic model of planar cable-driven parallel robots are introduced in 
general form and verified for a constrained cable-driven parallel robot in Sim-mechanics. Path planning 
based on artificial potential field approach is considered to prevent collision between dynamic obstacle, 
end-effector and cables in order to achieve collision-free path. As well as to reduce energy 
consumption, cable tension constraints have been involved in optimization of path planning. This 
method is proposed to control a cable robot. Therefore, obstacles are distributed randomly in order to 
have a complex environment. By this way, cable tension constraint is studied as one of the most crucial 
challenges for cable driven robots. Moreover, Fmincon function of Matlab is applied in order to take 
into account the required constraints and maintain the limits for cables tension. The latter  leads to solve 
the redundancy resolution which is a definite asset in controlling a cable-driven parallel robot. Finally, a  
four-cables driven parallel robot is controlled by using the so-called computed torque method for 
tracking the desired and optimized path. The method is explained and obtained results indicate the 
efficiency of the proposed approach. 
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Fig. 1 Schematic view of a CDPR with n cables 
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Fig. 2 Kinematic modeling of a CDPR with n cables 
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Fig. 3 Free-body-diagram of a planar CDPR’s end-effector 
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Fig. 4 Design parameters of the understudy CDPR 
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Fig. 5 Desired path for tracking a given trajectory 
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Fig. 6 Desired path for tracking a given trajectory 
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Fig. 7 Difference of obtained forces and moments from virtual and 
dynamic model of robot. 
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Fig. 8 Control of the understudy planar CDPR in Simulink 
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Fig. 9 Obtained cable forces for the path shown in Fig.  
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Fig. 10 Potential field of obstacle and cables and dynamic plane  
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1   
Table 1Comparison between the used method and other methods  
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Fig. 11 Potential field of goal 
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Fig. 12 Potential field of goal, obstacle, cables and dynamic plane  
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Fig. 13 Movement path of dynamic obstacle in workspace of robot  

13     

 1 :   
1: Input: initial and target position of the robot and objects paths 
2: Output: minimal energy obstacle avoided path 
3: P(x , y ) = start position of the end-effector 
4: P(x , y ) = Final position of the end-effector 
5: while (x ~= x )||( y ~= y ) 
6: Update( Scaling factor, Distance of influence ) 
7: 
8: 
9: 

k = Scaling factor 
D = Distance of influence  
(xsize, ysize)= size of the pic 

10: 
11: 
12: 
13: 
14: 
15: 
16: 
17: 
18: 
19: 

for i = 1:xsize 
 for j = 1: ysize  
 r  = D (i,j); 
 if (r  <= Di) 
 U (i, j) = 0.5 (r  - D )^2/k ; 
 else 
 U (i,j) = 0; 
 End if 
 End for 

 End for 
20: U = 0.5k ( P P )^2; 
21: Sum=[ Sum (y-1,x-1), …, Sum (y+1,x+1)]; 
22: E=  
23: dis =[ E (S)]; 
24: F = min(dis(: )) 
25: X , Y F 
26: end while 
27: return (X , Y , ) 
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Fig. 14 Obstacle avoidance path planning with potential field for Fig. 
13  

14  13   

  
Fig. 15 Trajectory error of the path presented in Fig. 14 

15 14  

  
Fig. 16 Cables forces in trajectory of the obtained path presented in Fig. 
14 

16  14   
  

 .
 .

   
 .   

 .   
  

  
Fig. 17 Random movement path of two dynamic obstacle in workspace 
of robot 

17 

    

  
Fig. 18 Obstacle avoidance path planning with potential field for Fig. 
17 

18 17  

  
Fig. 19 Trajectory error of the path presented in Fig. 18 

19  18  
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Fig. 20 Cables forces in trajectory of the obtained path for Fig. 18  
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