ماهنامه علمى پژوهشى

mme.modares.ac.ir

حل عددی جریان حبابی در یک کانال انحناء دار با استفاده از روش ردیابی جبهه

محمد تقى مهربانى1، محمدرضا حيرانى نوبرى2*

1 - دانشجوی دکتری، مهندسی مکانیک، دانشگاه صنعتی امیرکبیر، تهران 2- استاد، مهندسی مکانیک، دانشگاه صنعتی امیرکبیر، تهران

* تھران، صندوق پستی mrnobari@aut.ac.ir ،15875-4413

چکیدہ	اطلاعات مقاله
در این مقاله جریان حبابی تراکم ناپذیر ویسکوز در داخل کانال انحناءدار تحت اثر گرادیان فشار بصورت عددی با استفاده از روش ردیابی جبهه شبیهسازی شده است. برای اینکار معادلات ناویر استوکس به روش تفاضل مرکزی با دقت مکانی درجه دو گسستهسازی شده و با استفاده از الگوریتم تصویر با بهرهگیری از پردازش موازی در مختصات استوانهای حل شده است. شبکه استفاده شده از نوع شبکه جابهجا شده و یکنواخت	مقاله پژوهشی کامل دریافت: 17 آبان 1394 پذیرش: 14 دی 1394 ارائه در سایت: 25 بهمن 1394
میباشد. نتایج حاصل نشان میدهد که در صورت عدم وجود شتاب گرانش در مسئله، جریان در داخل کانال انحناء دار را میتوان به دو ناحیه جدا از هم نسبت به صفحه میانی کانال تقسیم نمود. در واقع این صفحه، صفحه تقارن در جریان بدون حباب میباشد که مانع از اختلاط دو	<i>کلید واژگان:</i> کانال انحناء دار
جریان نیمه بالا و نیمه پایین کانال میشود. در میدان بدون جاذبه تعداد 12 حباب با قطر 0.125 واحد طول دیواره، در جریان اصلی در نظر گرفته شده است که در لحظه شروع به صورت یکنواخت در داخل کانال توزیع شدهاند. نتایج بدست آمده نشان میدهد که در نبود شتاب ثقل،	جریان چند فاز حباب حیاب تیاک نابذی
حبابها در نهایت به صورت اماری پایا شده و دارای مسیر حرکت ثابتی خواهند بود. در این حالت اثر پارامترهای فیزیکی مختلف مانند عدد رینولدز، انحناء کانال، عدد دین در حرکت حبابها بررسی شده است.	جریا <i>ن</i> توانیم فپدیر تفاضل محدود

A numerical study of bubbly flow in a curved duct using front tracking method

Mohamad Taghi Mehrabani, Mohamad Reza Heyrani Nobari*

Department of Mechanical Engineering, Amirkabir University of Technology, Tehran, Iran * P.O.B. 15875-4413 Tehran, Iran, mrnobari@aut.ac.ir

ARTICLE INFORMATION

Original Research Paper Received 08 November 2015

Keywords:

Curved duct

Multiphase Flow Bubble

Finite Difference

Incompressible Flow

Accepted 04 January 2016

Available Online 14 February 2016

ABSTRACT

In this article bubbly flow under the specified axial pressure gradient in a curved channel is studied numerically. To do so, a second order parallelized front-tracking/finite-difference method based on the projection algorithm is implemented to solve the governing equations including the full Navier-Stokes and continuity equations in the cylindrical coordinates system using a uniform staggered grid well-fitted to the geometry concerned. In the absence of gravity the mid-plane parallel to the curved duct plane, which is the symmetry plane in the single fluid flow inside the curved duct, separates the bubbly flow into two different flow regions not interacting with each other. Twelve bubbles with diameters of 0.125 wall units are distributed in equally spaced distances from each other. The numerical results obtained indicate that for the cases studied here, the bubbles reach the statistical steady state with an almost constant final orbital motion path due to the strong secondary field. Furthermore, the effects of different physical parameters such as Reynolds number, and curvature ratio on the flow field at the no-slip boundary conditions, are investigated in detail.

1-مقدمه

بیشترین کارهای عددی و تجربی انجام گرفته در زمینه جریان دوفاز در سالهای گذشته تمرکز روی لولهها و کانالهای مستقیم داشته که از طریق برازش کردن شبکه روی سطح حباب انجام گرفته است. در بین این مطالعات، ریسکسن و لیل [1] شکل پایدار یک تکحباب خالص در حالت تقارن محوری انجام داد و مکلاولین [2] کار ایشان را به حالت ناخالص توسعه داد. اوکا و ایشی [3] شبیهسازی سهبعدی حالت ناپایدار تک حباب تغییر شکل-پذیر را انجام دادند. حرکت جریان تک حباب در مقالات عددی و تجربی زیادی مورد مطالعه قرار گرفته و تا حدودی شناخته شده است که از جمله آنها می توان به ویجنگاردن [4] اشاره نمود.

بانر و تریگواسون [5] نوسانات سرعت و پخش شدن حبابها را در یک کانال مستقیم بررسی کردند. این شبیه سازی برای حرکت گذرای حبابها در جریان حبابی در بسیاری از عملیات صنعتی مانند انتقال حرارت دو فاز و جوششی، کاویتاسیون در سیستم های هیدرولیکی، خالص سازی آب، ستون حباب، صنایع شیمیایی نفت، خنککاری در نیروگاهها و غیره وجود دارد که فهم رفتار این جریان کمک بسیار زیادی در طراحی تجهیزات یاد شده خواهد داشت. لذا به منظور روشن شدن الگوی جریان، مطالعات بسیار زیادی در زمینه جریانهای چند فاز انجام شده است. اگر چه دانش موجود در جریان های چندفاز در کانالهای مستقیم علی رغم وجود مطالعات عددی و تجربی بسیار، همچنان دارای نواقص زیاد و مسائل پیچیده و حلنشده بسیاری است، این مسئله در کانالهای انحناءدار به مراتب پیچیده تو مشکل تر خواهد بود که مطالعات بسیار محدودی در این زمینه انجام گرفته است.

M. T. Mehrabani, M. R. Heyrani Nobari, A numerical study of bubbly flow in a curved duct using front tracking method, *Modares Mechanical Engineering*, Vol. 16, No. 2, pp. 179-188, 2016 (in Persian)

سیال مایع انجام گرفت که منجر به میدان سرعت متغییر برای حبابها گردید. آنها همچنین شبیهسازی حبابهایی با تغییر شکل زیاد در یک جریان هموژن را نیز بررسی نمودند [6]. آنها وابستگی نتایج را به تعداد حبابها بررسی نموده و متوجه شدند که سرعت بالا رفتن حبابها را می توان با شبیهسازی کانالی با حبابهای کمتر و با دقت مناسبی پیشبینی نمود ولى نوسانات سرعت و ضريب پخش شدن حبابها به شدت به تعداد حبابها بستگی دارد [7]. نتایج مشابهی توسط اسماعیلی و تریگواسون ىدىت آمد [8].

دبیری [9] نشان داد که در کانال عمودی اگر جهت جریان هم جهت حرکت حبابها در اثر گرانش و رو به بالا باشد، قابلیت تغییر شکل حبابها مهمترین اثر را در توزیع کلی حبابها در کانال و جریان دارد. به طوری که حبابهای کم تغییر شکل به سمت دیواره رفته و حباب های کاملا شکل پذیر به سمت مرکز کانال می رود. پیدرا و همکاران [10] اثر زاویه بر روی یک کانال کج و رفتار جریان حبابی با استفاده از شبیه سازی عددی مستقیم را مورد بررسی قرار دادند. آنها به صورت کمی افزایش اصطکاک و انتقال حرارت را برای جریان با حبابهای کمتغییر شکل به صورت تابعی از زاویه کانال و تعداد و اندازه حبابها نشان دادند.

روشهای عددی زیادی در دهههای گذشته برای شبیهسازی مستقیم جریانهای چند فاز در رینولدزهای مشخص با در نظر گرفتن اینرسی، ويسكوزيتي، تغيير شكل حباب و اثرات كشش سطحى آن انجام گرفته است که مروری بر آن توسط تریگواسون انجام گرفت [11]. هو [12]، جانسون و تزدويار [13] با استفاده از تكنيك شبكه متحرك بي سازمان توانستند تا 1000 ذره جامد را شبیهسازی نمایند. آنها در هر گام زمانی برای دنبال كردن حركت حبابها شبكه محاسباتي را بازسازي مي كردند. اخيرا هووا [14] توانست با یک روش ترکیبی متشکل از روشهای ردیابی جبهه و روش گرفتن جبهه که در آن یک شبکه ثابت زمینه برای مدل کردن سیال اصلی و یک شبکه مثلثی بی سازمان برای مدل نمودن سطح جبهه در نظر گرفته می می شود. همچنین هووا و همکاران [15] از یک ابزار تصحیح شبکه به نام .پارامش 1 بهره برد و از حل گر سیمپل 2 برای حل معادلات استفاده نمود. جیاکای و همکاران [16] نشان دادند که برای حبابهای هماندازه و بدون تغییر شکل، چگالی حبابها در مرکز کانال در حالت پایای آماری^د به گونهای است که مخلوط سیال در حالت تعادل هیدرواستاتیکی می باشد.

در زمینه کارهای تجربی نیز مطالعات بسیار زیادی برای حرکت تک حباب در اثر گرانش انجام شده است که بیشتر از آن برای اعتباردهی شبیه-سازی های عددی استفاده می شود. برای مثال با گات و وبر [17] شکل و سرعت نهایی حباب در حین بالا رفتن در یک سیال ویسکوز در اعداد مورتون بالا را تعیین نمود. مطالعه تجربی دوینولد [18] در مورد سرعت و شکل نهایی حبابهایی با شعاع 0.33 تا 1.00 میلی متر در آب بسیار تمیز انجام گرفت. زنیت نوسانات سرعت فاز مایع را در اعداد رینولدز بالا و عدد وبر پایین بررسی نمود [19]. مقایسه بین نتایج تجربی و عددی برای تغییر شکلهای متوسط حبابها در اعداد رینولدز بین یک تا صد با در نظر گرفتن ضریب پسا توسط ریموند و روزانت [20] انجام گرفت. لیو و همکاران [21] به طور خاص روی اثر بویانسی، نیروی اینرسی، کشش سطحی، ویسکوزیته، قطر نازلهای تولید حباب و خواص فیزیکی سیال زمینه روی شکل حباب، مسیر و سرعت آنها

(1)

مطالعه کرد. تاناکا [22] سامانهای را برای اندازه گیری مشخصات جریان حبابی در حالت لامینار و توربولانس ارائه نمود و نشان داد که وجود حباب در جریان باعث افزایش انتقال حرارت و اصطکاک مسیر می شود. دین و کویپر [23] حرکت چند حباب را در یک کانال صاف که از یک طرف در معرض شار حرارتی بود بررسی نمود و مشاهده کرد در این صورت نیز انتقال حرارت افزایش می یابد.

اگرچه جریان حبابی در کانالهای انحناءدار مسئله مشترکی در صنایع گوناگون میباشد ولی مطالعات کمی در این زمینه انجام گرفته است و بیشترین کارهای گزارش شده مربوط به لولهها و کانالهای مستقیم می باشد. منابع بسیار محدودی در زمینه جریان حبابی در کانالهای انحناءدار وجود دارد که در آن، اثرات نیروهای گریز از مرکز ناشی از انحناء کانال در نظر گرفته شده است و شکل جریان پیچیده جریان ثانویه در آن بررسی شده است. معمولا در غیاب جریان ثانویه، بالانس بین نیروهای گرانش، نیروی پسا و بویانسی در جهت عمودی و نیروی لیفت، توربولانس و نیروهای دیوار در جهت افق، رژیم جریان در کانالهای عمودی را نشان میدهد. این در حالی است که وجود جریان ثانویه در داخل کانال انحناءدار موجب تأثیر متقابل پیچیده تری بین دو فاز نسبت به کانال انحناءدار خواهد بود.

در بین روشهای عددی موجود در جریانهای چندفاز، روش ردیابی جبهه [24] قادر به مدل نمودن سطح بیرونی حباب و نیروی کشش سطحی از طریق دنبال کردن دقیق حرکت المان های سطح بین دو سیال بدون بهم خوردن پایستگی جرمی دو سیال میباشد. این روش اخیرا برای جریانهای تراکمپذیر توسط تراشیما و همکاران [26،25] توسعه داده شده که در آن از روش سیال مجازی برای سطح برخورد دو فاز استفاده مینماید. به علت محاسبات بسیار سنگینی که برای جریانهای حبابی نیاز میباشد، استفاده از روشهای پردازش موازی، امری اجتناب ناپذیر است.

در این مقاله حرکت 12 حباب با تغییر شکل محدود در یک کانال انحناءدار تحت اثر یک گرادیان فشار ثابت مورد بررسی قرار می گیرد. در غیاب نیروی گرانش، تعامل حرکت حبابها با جریان ثانویه ناشی از نیروهای گریز از مرکز مشخص شده است. بدین منظور سه انحناء مختلف و در سه عدد رینولدز در نظر گرفته شده است. با استفاده از روش ردیابی جبهه در مختصات استوانه معادلات مربوطه حل شده و اثرات پارامترهای بی بعد در حرکت حبابها در حالت پایای آماری مورد بررسی قرار گرفته است.

2- بدست آوردن معادلات

در این مقاله حرکت حبابهای تراکمناپذیر و در عین حال دارای تغییر شکل در داخل یک کانال انحناءدار در یک سیال ویسکوز زمینه تحت تأثیر گرادیان فشار ثابت و صرفنظر از گرانش، مورد بررسی قرار گرفته است. این حبابها ميتوانند هوا در داخل آب، روغن در داخل آب، فلزات مايع داخل روغن و غیره باشند. برای روشن تر شدن مطلب، معادلات ناویر استوکس در مختصات استوانه بیان شده اند که طرح شماتیک کانال مورد بحث در شکل 1 نشان داده شده است.

با استفاده از روش ردیابی جبهه میتوان معادلات مربوطه را به شکل یک تکسیال با در نظر گرفتن اثرات کشش سطحی و توزیع خواص در محل سطح حباب نوشت. با در نظر گرفتن این مطلب می توان معادلات را به شکل (1) نوشت. an

$$\frac{\partial pu}{\partial t} + \nabla \cdot puu = -\nabla \cdot p + + \nabla \cdot \mu((\nabla u) + (\nabla u)^{T}) + F_{st}$$

DOR: 20.1001.1.10275940.1395.16.2.37.2]

¹⁻ paramesh

²⁻ Simple 3- Statistical steady sate

تصویر¹ حل میشوند. در روش ردیابی جبهه، حبابها میتوانند با یکدیگر برخورد کنند و تغییر شکل دهند ولی امکان اینکه باهم ترکیب شده و یا تقسیم شوند وجود ندارد و این روش نمیتواند آن را مدل نماید. در روش تصویر معادلات ناویر استوکس روی شبکه جابهجا شده² یکنواخت با دقت مکانی مرتبه دو گسستهسازی شده است. در این بخش به طور خلاصه قسمتهای اصلی توضیح داده میشوند.

در روش تصویر معادلات ناویر استوکس با استفاده از سرعتهای کمکی u ، به ده مرحله تقسیم می شود.

$$\frac{(\rho u)^{n+1} - \rho^{n+1}u^*}{\Delta t} = -\nabla_h p^{n+1}$$
(12)

که در آن شار جرمی غیر تصویر شده عبارت است از: $\frac{\rho^{n+1}u^* - \rho^n u^n}{\Delta t} =$

 $-\nabla_{h} \cdot p^{n} u^{n} u^{n} + \nabla_{h} \mu^{n} (\nabla_{h} u^{n} + \nabla_{h}^{T} u^{n}) + \rho^{n} g + F_{st}^{n}$ (13) $+ u^{n} c_{st} c_{st}$

$$\nabla_h \frac{\mathbf{1}}{p^{n+1}} \cdot \nabla_h p = \frac{\mathbf{1}}{\Delta t} \nabla_h \cdot u^*$$
(14)

سرعتهای جدید در لحظه (1 + 1) را می توان از معادله (15) تعیین نمود. $\frac{\rho^{n+1}u^{n+1} - \rho^{n+1}u^*}{p^{n+1}u^n} = -\nabla_h p$ (15)

مدر معادلات (12) تا (15) اندیس *ط* گسستهسازی در مکان و اندیس *π* در زمان را نشان می دهند. دیورژانس شار جرمی در لحظه (1+*π*) در معادله (15) به منظور ارضای پیوستگی برابر صفر در نظر گرفته میشود. بعلاوه ترم نامعین نیروی کشش سطحی در معادله (11) با استفاده از روش پسکین³ [28] با استفاده از توابع وزنی مناسب روی تعداد محدودی از گرههای همسایه پخش میشود. در این شبیه سازی از توابع وزنی کسینوسی برای پخش کردن خواص روی شبکه زمینه استفاده شده است. در شکل 2 حرکت شبکه لاگرانژی روی شبکه یکنواخت زمینه نشان داده شده است.

در شکل 2 منظور از سیال 1، سیال داخل حباب و سیال 2 سیال زمینه میباشد. برای اینکه مقدار نهایی در حین هموارسازی⁴ پایسته بماند، لازم است که داشته باشیم:

شكل 2 شبكه جابه جا شده و موقعيت جبهه

در رابطه (1)
$$u$$
 بردار سرعت سیال، p فشار، $\rho = \mathcal{F}_{sl}$ و u ویسکوزیته
متغییر، g بردار شتاب گرانش و F_{si} نیروی حجمی کشش سطحی می باشد.
[27] نیروی مومنتوم در راستای r ، $\theta = z$ به شکل رابطه (2) می باشد [27].
 $\frac{\partial}{\partial t}(\rho u_r) + \frac{1}{r}\frac{\partial}{\partial r}(\rho r u_r u_r) + \frac{1}{r}\frac{\partial}{\partial \theta}(\rho u_\theta u_r) + \frac{\partial}{\partial z}(\rho r u_z u_r)$
 $-\rho \frac{u_r^2}{r} =$
 $-\frac{\partial p}{\partial r} - (\frac{1}{r}\frac{\partial}{\partial r}(r\tau_{rr}) + \frac{1}{r}\frac{\partial}{\partial r}\frac{\tau_{r\theta}}{\theta} - \frac{\tau_{\theta\theta}}{r} + \frac{\partial}{\partial z}(\rho u_\theta u_\theta)$
 $+ \frac{1}{r}\frac{\partial}{\partial \theta}(\rho u_\theta u_\theta) + \frac{1}{r}\frac{\partial}{\partial \theta}(\rho u_z u_\theta) + \rho \frac{u_r u_\theta}{r}$
 $\frac{\partial p}{\partial t}(1 - \frac{1}{r} - \frac{1}$

$$= -\frac{\partial p}{r\partial \theta} - \left(\frac{\mathbf{1}}{r^2}\frac{\partial}{\partial r}\left(r^2\tau_{r\theta}\right) + \frac{\mathbf{1}}{r}\frac{\partial\tau_{\theta\theta}}{\partial \theta} + \frac{\partial\tau_{\thetaz}}{\partial z}\right) + \rho g_{\theta} + F_{\text{st}-\theta}$$
(3)

$$\frac{\partial}{\partial t}(\rho u_z) + \frac{1}{r} \frac{\partial}{\partial r}(\rho r u_r u_z) + \frac{1}{r} \frac{\partial}{\partial \theta}(\rho u_\theta u_z) + \frac{\partial}{\partial z}(\rho u_z u_z)$$

$$= -\frac{\partial p}{\partial z} - \left(\frac{1}{r} \frac{\partial}{\partial r}(r \tau_{rz}) + \frac{1}{r} \frac{\partial \tau_{\theta z}}{\partial \theta} + \frac{\partial \tau_{zz}}{\partial z}\right) + \rho g_z + F_{\text{st-z}}$$
(4)
$$\sum_{k=1}^{r} \frac{\partial p}{\partial z} + \frac{1}{r} \frac{\partial r}{\partial \theta} + \frac{\partial r}{\partial z} = 0$$

$$x_{rr} = -\mu (2 \frac{\partial u_r}{\partial r})$$
(5)

$$\tau_{\theta\theta} = -2\mu \left(\frac{1}{r} \frac{\partial u_{\theta}}{\partial \theta} + \frac{u_r}{r} \right)$$
(6)

$$\tau_{zz} = -\mu (\mathbf{2} \frac{\partial u_z}{\partial z}) \tag{7}$$

$$\tau_{r\theta} = \tau_{\theta r} = -\mu \left(r \frac{\partial}{\partial r} \left(\frac{\partial}{\partial r} \right) + \frac{\partial}{r} \frac{\partial}{\partial \theta} \right)$$

$$\tau_{r} = \tau_{r} = -\mu \left(\frac{\partial u_{z}}{\partial r} + \frac{\partial u_{r}}{\partial r} \right)$$
(8)
(9)

$$\begin{aligned} t_{rz} = t_{zr} = -\mu \left(\frac{\partial u_{\theta}}{\partial r} + \frac{1}{\partial z} \right) \end{aligned} \tag{10}$$

$$\begin{aligned} t_{\theta z} = \tau_{z\theta} = -\mu \left(\frac{\partial u_{\theta}}{\partial r} + \frac{1}{r} \frac{\partial u_{z}}{\partial \theta} \right) \end{aligned}$$

$$F_{\rm st} = \int \sigma kn \delta(r - r_f) ds_f$$
(11)

 δ تابع سه بعدی دلتا می باشد که از طریق ضرب تابع یک بعدی دلتا حاصل شده است. k دو برابر مقدار متوسط انحناء و n بردار واحد عمود بر سطح حباب است. I نقطهای است که در آن معادلات حل میشود و I محل مکان جبهه است. I المان سطح جبهه می باشد. برای حل معادلات ذکر شده، شرط مرزی عدم لغزش روی دیوارهای کانال و شرط پریودیک در ورود و خروج کانال اعمال شده است.

3- روش عددی

معادلات بدست آمده در قسمت قبل به روش ردیابی جبهه بر پایه الگوریتم

projection
 staggered grid

³⁻ peskin method

⁴⁻ smoothing

$$\phi_{ijk} = \sum_{l} \phi_{l} w_{ijk}^{l} \frac{\Delta s_{l}}{r \mathbf{d} r \mathbf{d} \theta \mathbf{d} z}$$
(16)

در رابطه (16) ϕ_l مقدار تقریبی کمیت گسسته شده جبهه و ϕ_{ijk} مقدار تقریبی روی شبکه زمینه است. Δs_l سطح المان l. همچنین باید توابع وزنی شرط (17) را داشته باشند:

$$\sum_{ijk} w_{ijk}^{l} = \mathbf{1}$$
(17)

که در اینجا تابع وزنی عبارت است از

$$w_{ijk}(x_p) = d\left(r_p - (R_i + idr)\right) d(r_p \theta_p - (R_i + idr)) d(Z_n - kdz)$$
(18)

نقطه ای روی سطح، ($\mathbf{d}^r, \mathrm{d}\theta, \mathrm{d}\mathbf{z}$) فواصل شبکه در سه جهت (r_p, θ_P, z_p) نقطه ای روی سطح، ($\mathbf{r}_r, \theta_P, z_p$) محورهای r, θ, z ، و \mathbf{R}_r و \mathbf{R}_r هعاع داخلی و خارجی کانال است. در تابع وزنی پسکین، h فاصله شبکه است.

$$d(\mathbf{r}) = \begin{cases} \frac{1}{4h} \left(1 + \cos\left(\frac{\pi r}{2h}\right) \right) & , |\mathbf{r}| < 2h \\ \mathbf{0} & , |\mathbf{r}| \ge 2h \end{cases}$$
(19)

معادله مومنتوم و پیوستگی روی شبکه ثابت نشان داده شده در شکل 2 با دقت مکانی مرتبه دو و زمانی مرتبه یک (نوبری [29]) حل میشود. به علت اینکه پیشروی در زمان به شکل صریح میباشد، شرط پایداری بر طبق رابطه های (20) ارضا می شود.

$$\frac{6\Delta t}{\operatorname{Min}\left[\frac{\rho_{b}}{\mu_{b}},\frac{\rho_{a}}{\mu_{a}}\right]\operatorname{Min}\left[dr^{2},(r\Delta\theta)^{2},\Delta z^{2}\right]} \leq 1$$

$$\frac{\frac{1}{2}(u_{\max}\cdot u_{\max})\Delta t}{\operatorname{Min}\left[\frac{\rho_{b}}{\mu_{b}},\frac{\rho_{a}}{\mu_{a}}\right]} \leq 1$$
(20)

المانهای محاسباتی لاگرانژی سطح حباب از طریق محاسبه سرعت گرههای سطح بوسیله میانیابی سرعتهای شبکه اویلری حرکت میکنند. در هر گام زمانی بعد از حرکت المانهای شبکه لاگرانژی ، عملیات هموارسازی روی شبکه انجام میگیرد تا شبکه ای هموار ایجاد شود.

4- به روز رسانی مشخصات خواص

در روش ردیابی جبهه، مشخصات سیال مانند چگالی و ویسکوزیته با استفاده از موقعیت شبکه لاگرانژی در هر گام زمانی محاسبه می شود. که فرم گسسته شده آن به شکل (21) نوشته می شود.

$$\nabla p = \int \Delta \rho n \delta (r - r_f) ds \tag{21}$$

$$\nabla_h \rho_{ijk} = \sum \Delta \rho w_{ijk}^l \, n_e \Delta s_e \tag{22}$$

در معادله (22) م Δs_e سطح المان لاگرانژی است. با گرفتن دیورژانس از چگالی شبکه معادله پواسون برای چگالی روی شبکه زمینه حاصل می شود. $abla^2
ho =
abla_h \cdot
abla_{\rho_{ijk}}$ (23)

با حل معادله پواسون روی کل محدوده، توزیع چگالی روی شبکه محاسباتی بدست می آید. روش عددی استفاده شده برای حل معادله پواسون بدست آمده، بر اساس روش ماسک حباب میباشد که اولینبار توسط مهربانی و همکاران [30] در سال 2015 ارائه شده است.

5- تصحيح حجم

از آنجا که شبکه لاگرانژی حباب به صورت صریح جابهجا میشود، ممکن است در تغییر شکلهای زیاد و پیدرپی، حجم یا به عبارتی جرم داخل حباب پایسته نماند و به تدریج حبابها کوچک شوند. از جمله عوامل دخیل در این

امر می توان به خطاهای عددی میانیابی میدان سرعت از شبکه زمینه و یا خطای قطع عددی¹ ناشی از تغییر خواص سیال روی مرز حباب اشاره نمود که منجر به تغییر حجم حباب از مقدار اولیه خود شود. خوشبختانه مقدار تغییر حجم در هر گام زمانی بسیار کوچک میباشد ولی به علت طولانی بودن زمان شبیهسازی و زیاد بودن تعداد تکرارها (11 میلیون تکرار در زمانی حدود 350 ساعت برای هر شبیه سازی)، این خطاها با هم جمع شده و ممكن است به شكل غير فيزيكي، حجم حباب را تغيير دهند. به همين دليل در این کار از یک الگوریتم تصحیح حجم که اولین بار توسط هووا و لو [14] در سال 2007 ارائه شد، استفاده شده است تا حجم یا به عبارتی جرم حبابها در طول شبیهسازی ثابت بماند. در واقع روش وی یک روش هندسی برای جبران کاهش تدریجی حجم حبابها در شبیهسازیهای زمانبر می-باشد. در این روش در هر گام زمانی، حجم جدید حباب پس از جابهجایی و تغییر شکل، محاسبه شده و مقدار آن با مقدار حجم اولیه مقایسه می شود. اگر حجم حباب کمتر شده باشد، المانهای مثلثی که سطح حباب را پوشانده اند، در راستای بردار نرمال سطح، به مقداری جابهجا می شوند که حجم نهایی حباب با مقدار حجم اولیه برابر شود. بر عکس اینکار زمانی انجام می شود که حبابها در گام زمانی جدید بزرگتر از مقدار اولیه خود شوند. در این روش ختصات شبکه لاگانژی بر طبق معادله (24) اصلاح می شود

$$x_{f} - x_{f}^{*} = \frac{(V - V^{*})}{S^{*} \cdot n^{*}}$$
(24)

در معادله (24) ، , **x** و $, \mathbf{x}$ مکاننهایی و مکان اولیه شبکه لاگرانژی است. V حجم اولیه حباب و $, \mathbf{v}$ $, \mathbf{s}$ مقدار حجم، سطح، و بردار واحد عمود بر سطح خارجی حباب است. در شکل 3 مقدار تغییر حجم حباب بر حسب زمان رسم شده است. چنانچه مشاهده می شود نسبت تغییرات حجم برابر $\Delta V/V_0 = \pm 0.001$

6- تست استقلال از شبکه و دقت کد

به منظور تست استقلال از شبکه، کد محاسباتی توسعه داده شده در این تحقیق برای سه شبکه مختلف با ابعاد 50×50×50، 70×70×70، 90×90×90 تست شد که نتایج آن در شکل 4 نشان داده شده است. در این تست نسبت

1- Truncation error

دانسیته و ویسکوزیته برابر مقدار 0.2 در نظر گرفته شده است که در آن یک تک حباب در اثر گرادیان فشار ثابت در جهت جریان اصلی حرکت میکند. حرکت حباب در مختصات استوانهای بیان میشود که در جدول زیر مولفه Rموقعیت مرکز جرم حباب بر حسب زمان نشان داده شده است. چنانچه از شکل 4 به خوبی مشاهده میشود، از شبکه 70×70×70 به بعد، مسیر حرکت حباب تقریبا بر روی هم افتاده که عملکرد بسیار مطلوب کد برای استقلال آن را نشان میدهد. مشابه این تست توسط اسماعیلی و تریگواسون انجام گرفته است [8].

از طرف دیگر برای صحتسنجی کد توسعه داده شده در این تحقیق که از پایه در محیط برنامه نویسی فورترن نوشته شده است، به علت نبودن نتایج مشخص یک تک حباب در کانال انحناءدار، نتایج بدست آمده برای تک حباب در یک انحناء کم یعنی $D_h/R_c = 0.0001$ در حالت حدی به یک کانال مستقیم میل می کند معیار قرار گرفته و با اعداد بیبعد 10 = 20. $F = 10^{-3}$. (م) $P_b = 40^{-3}$ و 15 = μ_a/μ_b با نتایج گزارش شده توسط آنوردی و تریگواسون [24] مقایسه شد که در شکل 5 نشان داده شده است. در اینجا D_h قطر هیدرولیکی کانال، R_c متوسط کانال که برابر است با رو D_h عدد اوتووس، عدد مورتون، $\mu_a \rho_a$ و یم ویسکوزیته و چگالی سیال زمینه، μ_b و μ_b ویسکوزیته و سیال حباب میباشد.

چنانچه در شکل دیده می شود، هر دو شبیه سازی به نحو مطلوبی نتایج کار مرجع مورد نظر را تایید می نماید. تست دوم انجام شده برای صحت سنجی، بدست آوردن سرعت نهایی تک حباب در کانال عمودی ناشی از شتاب ثقل می باشد. شبکه استفاده شده در این تست برابر 64³ و اعداد بی بعد آن برابر $\rho_a = 0.1. \mu_b / \mu_a = 0.1$.**M** = 10⁻¹ .**E**o = 2

Fig.4 Grid independency test in three different mesh sizes of $50 \times 50 \times 50$, $70 \times 70 \times 70$, and $90 \times 90 \times 90$

شكل 4 تست استقلال از شبكه در سه شبكه متفاوت 50×50×50 70×70×70, 90×90×90

Fig. 5 Comparison of Unverdi [1] and present simulation. شکل 5 مقایسه نتایج آنوردی و کار حاضر

رینولدز محاسبه شده در این شبیه سازی در شکل 6 نتایج کار تریگواسون [8] مقایسه شده است که دقت مناسب کد را نشان میدهد.

7- نتايج و بحث

در یک جریان دو فاز حبابی مشخص، شکل حبابها وابسته به اندازه حبابها می باشد. مثلا حبابهای هوا در آب وقتی دارای قطر کوچکتر از 2 میلیمتر باشند تقریبا کروی هستند و در قطرهای بزرگتر به تدریج بیضی شده و در نهایت شبیه فنجان می شوند [5]. ولی در شبیه سازی می توان برای یک حباب با قطر مشخص، مقدار تغییر شکل را با تغییر کشش سطحی تنظیم نمود. در واقع هر چه کشش سطحی زیاد شود، فشار داخل حبابها زیاد شده و حباب-ها بمانند یک توپ پرفشار، کروی تر شده و کمتر در جریان سیال تغییر شکل می دهند. در شبیه سازی انجام گرفته در این تحقیق کشش سطحی به گونه ای در نظر گرفته شده است که حبابها دارای تغییر شکل کمی باشند تا زمان محاسباتی نیز کمتر شوند.

در غیاب شتاب گرانش، جریان چند سیاله داخل کانال انحناءدار توسط صفحه میانی به دو ناحیه متقارن تقسیم میشود. در واقع این صفحه، صفحه تقارن جریان در حالت تکسیاله میباشد. بنابراین میتوان دو جریان چند سیاله در این دو ناحیه در نظر گرفت بدون اینکه با یکدیگر اختلاطی داشته باشند. در این تحقیق، حرکت جریان حبابی در درون کانال انحناءدار تحت اثر گرادیان فشار ثابت در جهت محور کانال بررسی میشود. توزیع حبابها در لحظه اول به صورت یکنواخت است که 6 عدد در بالا و 6 عدد در ناحیه پائین کانال قرار دارند. در شکل 7 موقعیت اولیه حبابها در سه کانال با انحناء مختلف نشان داده شده است.

چگالی و ویسکوزیته در نظر گرفته شده برای حبابها در شبیهسازی 0.2 مقدار سیال زمینه می باشد. اگرچه مقادیر بیان شده در این تحقیق، مستقیما برای سیال های محدودی قابل اعمال می باشد ولی نتایج دید عمیق تری نسبت به جریان حبابی فراهم میکند. بانر [5] در سال 2002 نشان داد که میتوان به جای شبیهسازی جریانهای حبابی با نسبت چگالی زیاد که از لحاظ زمانی بسیار زمانبر میباشد (مثلا آب و هوا) میتوان از نسبتهای کمتر و در حدود 1.0 استفاده نمود. در واقع در این شبیه سازی هدف بررسی رفتار کلی حبابها میباشد و نه تک تک حبابها. با در نظر گرفتن این نکته،

Fig. 6 Reynolds numbers versus time for bubble rising in a vertical channel[8]

شکل 6 عدد رینولدز بر حسب زمان برای حباب در حال بالا رفتن از کانال عمودی [8]

Fig. 7 initial bubble distribution in three different curved duct

شکل 7 توزیع اولیه حباب ها در سه کانال متفاوت جدول 1 مقادیر استفاده شده در شبیه سازی

Table1	Parameters	used in the simulation	

مقدار	نماد	ابعاد
1	$\lambda = D_h/R_c$	اندازه کانال اول
1/3	$\lambda = D_h/R_c$	اندازه کانال اول
1/6	$\lambda = D_h/R_c$	اندازه کانال اول
80×80×80		اندازه شبكه
0.2	$ ho_b/ ho_a$	نسبت چگالی
0.2	μ_b/μ_a	نسبت ويسكوزيته
1.2		نسبت منظري كانال
1		پهنای کانال
0.125		قطر حباب ها
12		تعداد حباب ها
200-150-100		عدد رينولدز
صرف نظر	g	گرانش

حل معادلات تا زمانی انجام می شود که الگوی مسیر حرکت حبابها به صورت آماری به حالت پایای آماری برسد. در این حالت اثرات پارامترهایی چون عدد رینولدز، نسبت انحناء روی مسیر حباب ها بررسی شده است.

به طور کلی جریان داخل لوله های انحناء دار، نیروهای اصلی در غیاب گرانش عبارتند از گریز از مرکز، گرادیان فشار و نیروهای ویسکوز. اگرچه در بین آنها، دو نیروی اول یعنی گرادیان فشار و نیروی گریز از مرکز نقش بسیار مؤثرتری در تولید الگوهای مختلف حرکت حباب ها در سیال را دارند. به علت اعمال شرط مرزی عدم لغزش روی دیوارهها، جریان ثانویه در کناره دیوارهها در جهت شعاعی بیشتر تحت تأثیر گرادیان فشار می باشد و در این حالت در شعاع بیرونی مقدار گرادیان فشار نسبت به شعاع داخلی بیشتر می باشد. این امر موجب می شود جهت جریان کنار دیواره، چه در ناحیه بالا و چه در ناحیه پایین، از سمت شعاع خارجی به سمت معاع داخلی باشد. از طرف دیگر در مرکز کانال، به علت بزرگ بودن سرعت محوری، نیروی گریز از مرکز غالب می باشد که جهت آن از سمت شعاع داخلی به سمت شعاع خارجی میباشد. اثر متقابل این دو جریان روی یکدیگر، جریان ثانویه که دو گردابه متقارن معروف به گردابه دین¹ است را در دو ناحیه بالا و پایین ایجاد مینماید. توضیح کامل الگوی جریان برای کانال انحناءدار توسط نوبری و مینماید. در [13] ارائه شده است. بالانس نیروهای گریز از مرکز و گرادیان

فشار باعث میشود که قله سرعت محوری به سمت شعاع بیرونی برود و جریان ثانویه در مرکز گردابهها کمتر شود. در شکل 8 گردابههای جریان ثانویه بدون حضور حباب نشان داده شده است.

در لولههای انحناءدار، نیروی گریز از مرکز رابطه مستقیمی با چگالی دارد و در این تحقیق چون سیال داخل حباب از سیال زمینه سبکتر می باشد و دارای چگالی کمتری است، بنابراین طبق رابطه $\mathbf{r}'\mathbf{r}'$ مقدار نیروی گریز از مرکز در داخل حبابها از مقدار نیروی گریز از مرکز سیال زمینه کمتر می-باشد. بنابر این حبابها به سمت مرکز گردابههای اصلی جریان هدایت می-شوند. در واقع مرکز گردابه نقطهای است که در آن گرادیان فشار و نیروهای گریز از مرکز در حال تعادل میباشد. وقتی حباب به سمت شعاع داخلی کانال میرود، چون دارای نیروی گریز از مرکز پایینتری نسبت به محیط اطراف خارجی برود، اینبار گردابه برمیگردد و زمانی که میخواهد به سمت شعاع ناحیه مرکز گردابه نوسان مانع آن میشود. لذا حبابها در همان ناحیه مرکز گردابه نوسان می نماید. این پدیده در جریانهای چرخشی به صورت تحلیلی و نیز تجربی مشاهده شده است[23,33]. در شکل 9 حرکت سه بعدی حبابها در حضور خطوط جریان برای انحناء 1/3 نشان داده شده اند.

شكل 10 مسير حركت حبابها را در حالت پاياى آمارى روى سطح مقطع كانال يعنى صفحه R-Z، براى سه انحناء 1، 1/3 و 1/6 و 10 و سه عدد رينولدز 100، 100 و 200 را نشان مىدهد. در واقع اين نما از كانال، همان صفحه جريان² در شكل 1 مىباشد. نسبت انحناء و عدد رينولدز بر طبق رابطه $\lambda = D_h/R_c$ وابطه مىشوند كه در آن w سرعت محورى متوسط و v ويسكوزيته سينماتيك سيال زمينه است.

Fig.8 secondary flow (left) and axial main flow velocity (right) in R-Z plane of the duct

شکل8 جریان ثانویه (سمت چپ) و جریان اصلی محوری (سمت راست) در صفحه R-Z کانال

Fig.9 3D stream line with bubbles (left) and secondary flow field (right) in R-Z plane of the duct

شکل 9 خطوط جریان سه بعدی و حبابها (سمت چپ) و میدان جریان ثانویه (سمت راست) در صفحه R-Z کانال

¹⁻ Deen vortex

²⁻ Flow plane

Fig. 10 Steady state bubble trajectory project on the crosssection of the curved duct in R-Z plane شکل 10 حالت پایای آماری مسیر حرکت حبابها در سطح مقطع کانال انحناءدار در صفحه R-Z

چنانچه از شکل مشاهده میشود، حبابها ناحیه خود را ترک نمیکنند و در همان ناحیهای که در ابتدا قرار داده شده بودند، میمانند. یعنی مثلا اگر در ابتدا حباب در ناحیه بالا قرار داده شده باشند، پس از اینکه به حالت پایای آماری برسند نیز در همان ناحیه بالا خواهند بود. عین این مطلب برای حبابهای ناحیه پائین نیز برقرار میباشد. در شکل 10 از سمت چپ به راست عدد رینولدز زیاد می شود و این باعث می شود که نیروهای گریز از مرکز نیز افزایش یافته و مرکز گردابهها و نیز حبابها به سمت شعاع خارجی حرکت کند. نکتهای که می بایست در اینجا دوباره یادآوری شود این است که شتاب گرانش در این مسئله صرفنظر شده است و حبابها فقط تحت تأثیر گرادیان فشار محوری اعمال شده حرکت میکنند. در واقع تقارن جریان به خاطر همين موضوع ميباشد.

Fig. 11 Statistical steady state bubble trajectory in the curved duct (inner wall view)

شكل 11 حالت پاياى آمارى مسير حركت حبابها دركانال انحناءدار (ديد از ديواره داخل)

مسیر چرخش حبابها به شدت بستگی به نیروهای گریز از مرکز دارند و زیاد شدن این نیروها باعث می شود که حبابها زودتر به حالت پایای آماری برسند و در مدار نهایی خود قرار گیرند. برای روشنتر شدن مطلب، مسیر سه بعدی حبابها برای موارد شکل 10 در شکلهای 11 و 12 نشان داده شده است. در این شکلها، مسیر چرخش حبابها در ناحیههای بالا و پایین به طور واضح مشخص میباشد. معنی حالت پایای آماری در این تحقیق آن است که آنقدر در زمان پیش برویم تا الگوی حرکت حبابها تقریبا در زمان تکرار شوند. تعریف دقیق این حالت در [16] آمده است. شکلهای ارائه شده در این قسمت نشان میدهند که پس از حالت پایای آماری، تقریبا حبابها به چه صورت در کانال حرکت میکنند و تجمع آنها در کجاست. شکلهای نشان داده شده به این معنا نمی باشد که حباب ها ثابت هستند و یا در یک مدار ثابت حرکت میکنند. در واقع حبابها دائم در حال حرکت و برخورد با یکدیگرند.

شکل 13 نشان میدهند که چگونه حبابهای بالا و پائین از مکان اولیه خود حرکت کرده و به مدار چرخش نهایی خود میرسند. این صفحه، همان صفحه R-Z در مختصات استوانه و یا به عبارتی یک سطح مقطع عمودی از کانال میباشد که صرفنظر از مولفه heta، مولفهZمرکز جرم حبابها بر حسب مولفه R رسم شده است. در این شکل به خوبی میتوان مسیر چرخش حبابها در حالت یایای آماری را مشاهده نمود که در مرکز گردابهها تجمع می کنند. همچنین می توان نشان داد که با افزایش عدد رینولدز از سمت چپ به راست، تجمع حبابها نيز به سمت شعاع بيروني كانال حركت كرده است. در شکلهای 14، 15 و 16 مؤلفههای **R** و Z مرکز جرم حبابها بر حسب زمان برای هر سه انحناء نشان داده شده است. مشاهده میشود که در رینولدز بالا تقریبا بعد از دو سیکل، مسیر حرکت حبابها به حالت آماری پایا می شود. در این حالت الگوی مسیر به صورت پریودیک تکرار می شود. در این جا می بایست یادآوری شود که محور زمان، زمان فیزیکی را نشان میدهد.

Fig. 12 Statistical steady state bubble trajectory in the curved duct (top wall view)

شکل 12 حالت پایای آماری مسیر حرکت حبابها درکانال انحناءدار (دید از دیواره الا)

Fig.15 R & Z Spiral motion of bubble inside the curved duct by indicating the r and z coordinates of bubble centroid versus time for $\lambda = 1/3$

شکل 15 مولفه های R و Z مسیر حرکت مرکز جرم حبابها در داخل کانال برای

Fig.16 R & Z Spiral motion of bubble inside the curved duct by indicating the r and z coordinates of bubble centroid versus time for $\lambda = 1/6$

شکل 16 مولفه های R و Z مسیر حرکت مرکز جرم حباب ها در داخل کانال برای λ = 1/6 λ = 1/6

چنانچه مشاهده میشود در یک انحناء، مکان شعاعی قله سرعت با افزایش عدد رینولدز تغییر چندانی نمیکند ولی مکان و وسعت آن در راستای z بزرگتر و وسیعتر میشود. به همین علت در شکل 10 مسیرهای دایروی در هر دو ناحیه بالا و پایین با افزایش رینولدز کمی از مکان خود حرکت کرده و به سمت بالا و پایین حرکت میکنند.

Fig.13 Development of bubble motion projected to the curved duct cross-section to its steady state orbit

شکل 13 توسعه یافتن حرکت حبابها در سطح مقطع کانال انحناءدار تا حالت پایا

Fig.14 R & Z Spiral motion of bubble inside the curved duct by indicating the r and z coordinates of bubble centroid versus time for $\lambda = 1$

شکل 14 مولفه های R و Z مسیر حرکت مرکز جرم حبابها در داخل کانال برای λ = 1/3 λ = 1/3

چنانچه در شکلها دیده میشود، با افزایش عدد رینولدز یا انحناء کانال، حبابها زودتر به حالت پایای آماری می رسند. این مسئله میتواند ناشی از بزرگ شدن سرعتهای جریان ثانویه نسبت به جریان محوری در اثر افزایش عدد رینولدز و انحناء کانال باشد. به منظور روشن شدن وابستگی مسیر چرخش حبابها به عدد رینولدز، کانتور سرعت محوری برای همه کانالها در شکل 17 نشان داده شده اند.

Fig.17 axial velocity contour for channels شکل 17 کانتور سرعت محوری برای کانال ها

در این تحقیق رفتار کلی حرکت حبابها در کانالهای انحناءدار با فرض شتاب گرانش صفر بیان شده است. به طور خلاصه، افزایش انحناء بیبعد و عدد رینولدز تأثیر بسیار مهمی روی نیروهای گریز از مرکز که نقش بسیار مهمی در شکل گیری الگوی چرخش حبابها در حالت پایا دارد می گذارد. هر چه نیروهای گریز از مرکز بیشتر شود، سرعت رسیدن به حالت پایای آماری در مدار چرخش حبابها بزرگتر خواهد بود. کم شدن انحناء بیبعد و عدد رینولدز باعث کاهش نیروهای گریز از مرکز شده و در نتیجه حباب ها دیرتر پایا خواهند شد. در هر حال حبابها نزدیک مرکز گردابههای اصلی در ناحیه-میای بالا و پایین کانال قرار خواهند گرفت. اگر چه کانالهای زیادی با تعداد مسئله، در اینجا فقط در مورد رفتار کلی حبابها در جریان های لامینار بحث شد.

8- خلاصه و نتیجه گیری

در این تحقیق حرکت 12 عدد حباب تراکم ناپذیر و در عین حال دارای قابلیت تغییر شکل، در داخل یک کانال انحناءدار تحت تأثیر گرادیان فشار ثابت و با صرف نظر از نیروی گرانش بررسی شد. روش عددی ردیابی جبهه برای گسستهسازی معادلات حاکم در مختصات استوانهای استفاده شد. شبیه-سازی انجام گرفته برای سه انحناء مختلف در سه عدد رینولدز مختلف برای بررسی رفتار حبابها در حالت پایای آماری انجام گرفت. نتایج عددی نشان داد که نیروهای گریز از مرکز ناشی از انحناء که باعث چرخش جریان در کانال میشوند، باعث میشوند که حبابها در کانال در حالت پایای آماری به سمت مرکز گردابههای اصلی در نواحی بالا و پایین نزدیک شده و در آنجا مشاهده شد که در یک انحناء ثابت با افزایش عدد رینولدز، جریان ثانویه قویتر شده و باعث میشود که مرکز گردابههای بالا و پایین به سمت شعاع مشاهده شد که در یک انحناء ثابت با افزایش عدد رینولدز، جریان ثانویه نوی تر شده و باعث میشود که به تبع آن حبابها نیز به آن مکان منتقل می-شوند.

	9- فهرست علائم
پهنای کانال (m)	а
ارتفاع کانال(m)	b
قطر هيدروليكي (a+b) لله = 2 ab	\mathbf{D}_{h}
قطر حباب (m)	d_b
سطح المان سطحی جبهه (m2)	dś
Eo = $g\Delta ho d_b^2/\sigma$ عدد اوتووس	Eo
نیروی حجمی کشش سطحی	F _{st}
شتاب گرانش(m/s ²)	g
فاصله شبکه (m)	h
انحناء (1/R)	k
Re/ $\lambda^{1/2}$ عدد دین	\mathbf{k}_{LC}
$\mathbf{Mo}=g\mu_o^4\Delta ho/ ho_o^2\sigma^3$ عدد مورتون	Мо
${\sf N}= ho_{o}^{2}d_{b}^{3}g/\mu_{o}^{2}$ عدد ارشمیدس	Ν
بردار عمود	ň
فشار (kgm ⁻¹ s ⁻²)	р
متوسط شعاع انحناء 2/R _c = (R _i + R _o)	R_c
شعاع داخلی (m)	R _i
شعاع خارجی (m)	R_o
Re = $v_m D_h / v$ عدد رينولدز	Re
مؤلفه شعاع مرکز جرم حباب (m)	R_b
نقطه دلخواه روى جبهه	ŕ
مؤلفه های محور مختصات استوانه (m)	r ı θ ı z
زمان(s)	t
مولفه های سرعت در مختصات استوانه (m/s)	u , v , w
بردار سرعت کلی (m/s)	V
سرعت متوسط محوری (m/s)	v_m
سرعت حباب نسبت به سیال زمینه (m/s)	v_b
$\mathbf{We} = \rho v_b^2 d_b / \sigma$ عدد وبر	We
وزن شبکه در نقطه <i>ijk</i>	W _{ijk}
مولفه z مرکز جرم حباب(m)	Z_b
	علائم يونانى
$\lambda = D_h/R_c$ نسبت انحناء	λ
ويسكوزيته سيال(Pa.s)	μ
ویسکوزیته سینماتیکی (m²/s)	θ
چگالی حباب (kg/m ³)	$ ho_b$

μ_b ویسکوزیته حباب μ_a ویسکوزیته سیال زمینه

مقدار گسسته شده جبهه $otin arphi_l$

مقدار گسسته شده شبکه زمینه \emptyset_{ijk}

ا مساحت المان Δs_l

(kg/m³) چگالی سیال زمینه (ho_a

- تابع المان δ
- σ ضریب کشش سطحی
- $(ext{kg/m}^3)$ چگالی سیال ho

- [17] D. Bhagat, M.E. Weber, Bubbles in viscous liquids: shapes, wakes and velocities, *Journal of Fluid Mechanics*. Vol. 105, No. 1, pp. 61-85, 1981.
- [18] P.C. Duineveld, The rise velocity and shape of bubbles in pure water at high Reynolds number, *Journal of Fluid Mechanics*. Vol. 292, No. 1, pp. 325-332, 1995.
- [19] R. Zenit, D. L. Koch, A.S. Sangani, Measurements of the average properties of a suspension of bubbles rising in a vertical channel, *Journal of Fluid Mechanics*, Vol. 429, No. 1, pp. 307-342, 2001.
- [20] F. Raymond, J. M. Rosant, A numerical and experimental study of the terminal velocity and shape of bubbles in viscous liquids, *Chemical Engineering Science*, Vol. 55, No. 5, pp. 943-955, 2000.
- [21] L. Liu, H. Yan, G. Zhao, Experimental studies on the shape and motion of air bubbles in viscous liquids, *Experimental Thermal* and Fluid Science, Vol. 62, No. 1, pp. 109–121, 2015.
- [22] M. Tanaka, Numerical study on flow structures and heat transfer characteristics of turbulent bubbly upflow in a vertical channel, *Computational Simulations and Applications*, Vol. 20, No. 1, pp. 119–142, 2011.
- [23] Deen, Niels, Kuipers, Direct numerical simulation of wall-to liquid heat transfer in dispersed gas–liquid two-phase flow using a volume of fluid approach, *Chemical Engineering Science*, Vol. 102, No. 1, pp. 268–282, 2013.
- [24] S.O. Unverdi, G. Tryggvason, A front-tracking method for viscous incompressible multi-fluid flows, *Journal of Computional Physics*, Vol. 100, No. 1, pp. 25–37, 1992.
- [25] H. Terashima, G. Tryggvason, A front-tracking/ghost-fluid method for fluid interfaces in compressible flows, *Journal of Computional physiscs*, Vol. 228, No. 11, pp. 4012–4037, 2009.
- [26] H. Terashima, G. Tryggvason, A front-tracking method with projected interface conditions for compressible multi-fluid flows, *journal of Computers & Fluids*, Vol. 39, No. 10, pp. 1804–1814, 2010.
- [27] Ain A. Sonin, *Equation of Motion for Viscous Fluids*, 8th edition, pp.28-30, Massachusetts Institute of Technology, Department of Mechanical Engineering, 2001.
- [28] C.S. Peskin, Numerical analysis of blood flow in the heart, *Journal of Computional Physics*, Vol. 25, No. 3, pp. 220, 1977.
- [29] M.R. Nobari, G. Tryggvason, Head-on collision of drops, *Physics of Fluids*, Vol. 8, No. 1, pp. 29-42, 1996.
- [30] M.T. Mehrabani , M.R.H. Nobari , G. Tryggvason, Accelerating Poisson solvers in front tracking method using parallel direct methods, *Computers & Fluids*, Vol. 118, No. 1, pp. 101–113, 2015.
- [31] M.R.H. Nobari, M.T. Mehrabani, A numerical study of fluid flow and heat transfer in eccentric curved annuli, *International Journal* of Thermal Sciences, Vol. 49, No. 2, pp. 380–396, 2010.
- [32] F. Magaud, A. F. Najafi, J. R. Angilella, M. Souhar, Modeling and qualitative experiments on swirling bubbly flows: single bubble with rossby number of order 1, *Transactions of the ASME*, *Journal of Fluids Engineering*, vol. 125, No. 2, No. 2, pp. 239–246, 2003.
- [33] T. Uchiyama1, S. Sasaki, Experimental Investigation of the Interaction between Rising Bubbles and Swirling Water Flow, *International Journal of Chemical Engineering*, Vol. 20, No. 1, pp. 201-211, 2014.

زيرنويسها

10-مراجع

- G. Ryskin, L. G. Leal, Numerical solution of free-boundary problems in fluid mechanics, Part 2. Buoyancy-driven motion of a gas bubble through a quiescent liquid, *Journal of Fluid Mechanic*, Vol 148, No. 1, pp. 19–35, 1984.
- [2] J. B. McLaughlin, Numerical simulation of bubble motion in water, *Journal of Colloid Interface Science*, Vol. 184, No. 2, pp. 614–625, 1996.
- [3] H. Oka, K. Ishii, Numerical analysis on the motion of gas bubbles using level set method, *Journal of Physics*, Vol. 68, No. 3, pp. 823–832, 1999.
- [4] L.V. Wijngaarden, The mean rise velocity of pairwise-interacting bubbles in liquid, *Journal of Fluid Mechanic*, Vol 251, No. 1, pp.55-78, 1993.
- [5] B. Bunner, and G. Tryggvason, Dynamics of homogeneous bubbly flows Part2. Velocity fluctuations, *Journal of Fluid Mech*, Vol. 466, No. 1, pp. 53-84, 2002.
- [6] B. Bunner, and G. Tryggvason, Effect of bubble deformation on the properties of bubbly flows, *Journal of Fluid Mech*, Vol. 495, No. 1, pp. 77–118, 2003.
- [7] B. Bunner, & G. Tryggvason, Dynamics of homogeneous bubbly flows. Part1. Rise velocity and microstructure of the bubbles, *Journal of Fluid Mech*, Vol. 466, No. 1, pp. 17–52, 2002.
- [8] A. Esmaeeli, G. Tryggvason, Direct numerical simulations of bubbly flows Part 2. Moderate Reynolds number arrays, *Journal Fluid Mechanics*, Vol. 385, No. 4, pp. 325-358, 1999.
- [9] S. Dabiri, G. Tryggvason, Heat transfer in turbulent bubbly flow in vertical channels, *chemical einginering science*, Vol. 122, No. 1, pp. 106-113, 2015.
- [10] S. Piedra, J. Lub, E. Ramos, G. Tryggvason, Numerical study of the flow and heat transfer of bubbly flows in inclined Channels, *International Journal of Heat and Fluid Flow*, Vol. 56, No. 12, pp. 43–50, 2015.
- [11] G. Tryggvason, B. Bunner, A. Esmaeeli, D. Juric, N. Al-Rawahi, W. Tauber, J. Han, S. Nas, & Y. Jan, A front tracking method for the computations of multiphase flow, *Journal of computional physiscs*, Vol. 169, No. 1, pp. 708–759, 2001.
- [12] H. H. Hu, Direct numerical simulations of flows of solid–liquid mixtures, *International of journal of Multiphase Flow*, Vol. 22, No. 1, pp. 335–352, 1996.
- [13] A. A. Johnson, & T. E. Tezduyar, 3D simulation of fluid-particle interactions with the number of particles reaching 100, *Computional method of applied mechanic engineering*, Vol.145, No. 3, pp.301–321, 1997.
- [14] J. Hua, J. Lou, Numerical simulation of bubble rising in viscous liquid, *Journal of Computional physiscs*, Vol. 222, No. 1, pp. 769-795, 2007.
- [15] J. Hua, J. F. Stene, & P. Lin, Numerical simulation of 3D bubbles rising in viscous liquids using a front tracking method, *Journal of Computational Physics*, Vol. 227, No. 2, pp. 3358-3382, 2008.
- [16] J. Lu, S.Biswas, G. Tryggvason, A DNS study of laminar bubbly flows in a vertical channel, *International journal of Multiphase Flow*, Vol. 32, No. 6, pp. 643–660, 2006.