ماهنامه علمى پژوهشى

mme.modares.ac.ir

مکانیک،مندر میکنیک،مندر

تحلیل دینامیکی استوانه جدار ضخیم بلند تحت فشار داخلی دینامیکی با استفاده از تئوری تغییر شکل برشی مرتبه بالا

سیدعلی آذرپژو¹، سیدروحالله کاظمی²*

1– دانشجوی کارشناسی ارشد، مهندسی مکانیک، دانشگاه گیلان، رشت 2– استادیار، مهندسی مکانیک، دانشگاه گیلان، رشت ٭ رشت، صندوق پستی kazemi@guilan.ac.ir،3756

چکیدہ	اطلاعات مقاله
طراحی لولههای انتقال گاز، لولههای تفنگ، لولههای موتور انفجار در جت و غیره همگی مرتبط با مسأله لوله تحت بارگذاری داخلی دینامیکی میباشند. در مقاله حاضر پاسخ دینامیکی پوسته استوانهای جدار ضخیم، تحت بارگذاری داخلی دینامیکی با در نظر گرفتن تئوری تغییر شکل برشی مرتبه بالا و مقایسه آن با تئوری تغییر شکل برشی مرتبه اول میرسکی- هرمان مورد مطالعه و بررسی قرار گرفته است و اثر اینرسی دورانی و تغییر شکلهای برشی عرضی در معادلههای حاکم بر سامانه دینامیکی در نظر گرفته شده است. بدین منظور ابتدا معادلات حرکت پوسته استوانهای توسط اصل همیلتون بهدست میآیند سپس معادلههای حرکت پارهای به دست آمده، با تغییر منظور ابتدا معادلات حرکت معمولی تبدیل میشوند که با این روش، مسأله به صورت تحلیلی تحت انواع بارگذاریهای دینامیکی بدون در نظر گرفته اش تر اینا مرای مرزی دو سر استوانه با فرض بلند بودن طول آن قابل حل است. همچنین مسأله موردنظر توسط روش اجزای محدود با استفاده از نرمافزار آباکوس مدل سازی و سابروتین نویسی شده و با نتایچ حل تحلیلی صحه گذاری شده است. مقایسه نتایچ روش تجاری محدود با استفاده از نرمافزار آباکوس مدل معمولی ترد زمان می دهد که تئوری مرتبه بالای استفاده شده برای محاود با می مرتبط با مسأله و مرتبه ایل و مرتبه اول از آباکوس مدل مدور نشان می دهد که تئوری مرتبه بالای استفاده شده برای محاسبه پاسخ دینامیکی استوانه جدار ضخیم در نول گرفتن اثر شرایط مرزی دو محدود نشان می دهد که تئوری مرتبه بالای استفاده شده برای محاسبه پاسخ دینامیکی استوانه جدار ضخیم در نواحی دورتر از لایه میانی محدود نشان می دهد که تئوری مرتبه بالای استفاده شده برای محاسبه پاسخ دینامیکی استوانه جدار ضخیم در نواحی دورتر از لایه میانی	مقاله پژوهشی کامل دریافت: 27 خرداد 1396 ارائه در سایت: 31 شهریور 1396 <i>کلید واژگان:</i> استوانه جدار ضخیم پاسخ دینامیکی تئوری مرتبه بالا

Dynamic analysis of long thick cylindrical shell subjected to dynamic internal pressure using high order shear deformation theory

Sayyed Ali Azarpazhoo, Sayyed Roohollah Kazemi*

Department of Mechanical Engineering, University of Guilan, Guilan, Iran * P.O.B. 3756, Rasht, Iran, kazemi@guilan.ac.ir

ARTICLE INFORMATION	ABSTRACT	
Original Research Paper Received 17 June 2017 Accepted 11 August 2017 Available Online 22 September 2017	Designing explosion of gas pipelines, gun tubes, pulse detonation engine tubes, etc are all related to the problem of cylindrical shell subjected to dynamic internal loads. In this paper, dynamic response of the thick cylindrical shell subjected to dynamic internal load with considering the high order shear deformation theory (HODT) is investigated and compared with the first order shear deformation theory	
Keywords: Thick Cylindrical Shell Dynamic Response Dynamic Load High Order Deformation Theory	of Mirsky- Hermann (FSDT). The effects of transverse shear deformation and rotatory inertia were included in the governing equations of the dynamic system. First, the equations of motion have been derived by using Hamilton's principle then by changing variables the obtained partial differential equations have been converted to ordinary differential equations. With this method, the problem can be solved for various mechanical moving pressure loads without considering the effect of boundary conditions with long length assumption. The results of the present analytical method have been verified by comparing with finite element results, using software. The comparison of the results with the finite element method shows that the high order theory and first order Mirsky-Hermann theory can predict the dynamic response of the thick cylindrical shell and the high order theory in areas away from the middle layer is more successful.	

پوستهها بهطور کلی، سازههای خمیدهای هستند که در برابر نیروها و لنگرهای وارد شده، مقاومت مطلوب ویژهای دارند. بالا بودن ظرفیت تحمل بار در پوستهها موجب توجه پژوهشگران بسیاری قرار گرفته است، اما پیچیدگی تحلیل آنها نیز قابل توجه است بهطوری که تاکنون هیچ حل دقیقی برای

Please cite this article using:

برای ارجاع به این مقاله از عبارت ذیل استفاده نمایید:

S. A. Azarpazhoo, S. R. Kazemi, Dynamic analysis of long thick cylindrical shell subjected to dynamic internal pressure using high order shear deformation theory, *Modares Mechanical Engineering*, Vol. 17, No. 9, pp. 427-438, 2017 (in Persian)

میانی (R) بیشتر از 0.05 میباشد [1]. تئوری این دسته از پوستهها برمبنای تئورى الاستيسيته خطى بنا شده است. بهطور كلى به دليل كوچك نبودن ضخامت نسبت به ابعاد دیگر، نمی توان از تئوری های پوسته های جدار نازک استفاده نمود و باید از تئوری الاستیسیته سهبعدی استفاده کرد ولی به دلیل پیچیدگی تحلیل، با فرضیاتی میتوان از تئوری الاستیسیته دوبعدی یا تئوری تغییر شکل برشی برای تحلیل استوانههای ضخیم استفاده کرد. از جمله کسانی که تئوری دوبعدی پوستههای استوانهای را ارائه کردند، ولاسو [2] و گلدنوایزر [3] بودند. آنها عبارت z/R + 1 اثر شکل ذوزنقهای مقطع پوسته^۲ را معرفی کردند و میدان جابجایی را کلاسیک در نظر گرفتند. مطالعه رفتار دینامیکی استوانههای جدار ضخیم در شرایط و هندسههای مختلف و در کاربردهای گوناگون مانند تجهیزات و مخازن تحت فشار [4]، پدیدههای انفجار [5] و غیره همواره مورد توجه محققین بسیاری قرار گرفته است.

میرسکی- هرمان با به کارگیری تئوری تغیر شکل برشی مرتبه اول، پاسخ ارتعاشات آزاد پوستههای استوانهای جدار ضخیم را ارائه کردند [6]. در این تئوری، جابجاییهای هر نقطه از پوسته با جابجایی سطح میانی توصیف نمی شود بلکه با مجموع جابجایی سطح میانی و جابجایی آن نقطه نسبت به سطح میانی بیان میشود. در تئوریهای خمشی و غشایی، تاکید بر جابجایی صفحه میانی بوده ولی در تئوری تغییر شکل برشی، علاوه بر جابجایی صفحه میانی، شیب المان پوسته را نیز به علت جدار ضخیم بودن در نظر می گیرند.

زمینههای تحقیقاتی مرتبط با بارگذاری متحرک عبارت است از خطوط راه آهن (نسبت به حرکت واگن)، لولههای توپ و تفنگ در حین شلیک، در خودروها در اثر حركت و غيره. اولين تئوري جامع براي پاسخ الاستيك لوله به بار متحرک توسط تانگ 7][در سال 1965 صورت گرفت. تانگ مدلی برای پیشبینی رفتار پوسته جدار نازک به شاک^۳ داخلی را ارائه کرد. وی فرض کرد که طول پوسته بینهایت میباشد و مساًله را به حالت پایا^۴ تبدیل کرد. با این فرضیات جواب مسأله مستقل از مکان، بهدست میآید. با این مدل وجود سرعت بحرانی اثبات می شود. طبق این مدل در سرعت های بحرانی دامنه حرکت پوسته بینهایت میشود که در واقعیت وجود خواص دمپینگ، ویژگیهای غیرخطی و تغییر شکل پلاستیک باعث جلوگیری از تغییر شکل بیش از حد پوسته میشوند. در مدل تانگ اثر برش عرضی و اینرسی دورانی لحاظ شده بود. رایزمن [8] نیز در همان سال مدلی برای توضیح پاسخ سازه-ای پوستههای جدار نازک تحت پیش تنش ارائه داد.

سیمکینز [9] در سال 1992 پاسخ پوسته استوانهای جدار ضخیم را در اثر بارگذاری متحرک ثابت در لولههای طویل بهدست آورد. در سال 1994 موكويد [10] مدلى را براساس تئورى الاستيسيته براى پوستههاى جدار ضخیم با فرض متقارن محوری بودن ارائه کرد و پاسخ دینامیکی پوسته استوانهای به بارگذاری ضربهای را با استفاده از روش تفاضل محدود به دست آورد. بلتمن [11] پاسخ یک لوله به انفجار گازهای داخلی را در سال 2002 بررسی کرد. وی اولین بار، بارگذاری را بهصورت انفجاری در نظر گرفت. مظاهری و همکاران [12] مدل حالت گذرا، با طول محدود و با در نظر گرفتن اثر برشی و اینرسی دورانی را در سال 2005 معرفی کردند. میرزایی و همکاران [13] در سال 2006 مدلی برای لوله جدار نازک با در نظر گرفتن اثر برشی و اینرسی دورانی وانعکاس امواج ناشی از بارگذاری الاستو- دینامیک^۵ ارائه دادند. میرزایی [14] در سال 2012 مجموعهای از روشهای تحلیلی را

برای رفتار ارتعاشی استوانه جدار نازک تحت فشار متحرک داخلی که به صورت متوالی اعمال می شوند را ارائه نمود. میرزایی و همکاران [15] در سال 2015 مجموعه ای از راه حلهای تحلیلی برای پاسخ الاستو- دینامیک گذرا از لولههای استوانهای ناهمسانگرد تحت فشار در حال حرکت با پروفیل خاص را مورد بررسی قرار دادند.

در این راستا دستیابی به مدل تحلیلی در تحلیل استوانههای جدار ضخیم با بارگذاری داخلی متحرک با توجه به اهمیت کاربردی آنها در صنايع مختلف حائز اهميت است. از اينرو در اين مقاله، براى اولين بار به منظور افزایش دقت و اهمیت در نظر گرفتن ترمهای مرتبه بالاتر میدان جابجایی در تئوریهای دو بعدی و اثر گذاری آن در نتایج بهدست آمده، از تئوری مرتبه بالای تغییر شکل برشی، در تحلیل دینامیکی استوانه جدار ضخيم تحت فشار داخلى ديناميكي متحرك با فرض بىنهايت بودن طول استوانه و مقایسه آن با تئوری تغییر شکل برشی مرتبه اول میرسکی- هرمان انجام شده است. در این تئوری علاوه بر در نظر گرفتن میدان جابجایی مرتبه بالا، کرنشهای نرمال عرضی تا مرتبه دوم در نظر گرفته شده است و اثر عبارت 1 + z/R نیز به طور دقیق در نظر گرفته شده است. اینرسی و تغییر شکلهای برشی و نرمال عرضی نیز در نظر گرفته شده است.

2- روابط حاکم بر پوسته استوانهای

شکل 1" یک پوسته استوانهای متقارن محوری با شعاع متوسط R، ضخامت" و طول L را به همراه مبداً مختصات (جهتهای مثبت قراردادی) نشان hمیدهد. سطح میانی پوسته بهعنوان سطح مرجع در نظر گرفته شده، دستگاه مختصات x, z روی آن قرار داده شده است. فرضیات استفاده شده برای x, zبهدست آوردن معادلات حرکت عبارتاند از: الف) هندسه و بارگذاری متقارن است. ب) پوسته ایزوتروپیک⁶ و همگن^۷ بوده. ج) تغییر شکلهای پوسته کوچک در نظر گرفته شدهاند و ماده در محدود الاستیک خطی قرار دارد. د) از اثر تنش اولیه صرفنظر شده است. بسط سری تیلور^ برای توسعه یک فرمولاسیون دو بعدی از یک مسأله الاستیسیته سه بعدی مورد استفاده قرار w(x,z,t) و u(x,z,t) گرفته است. روابط زیر، با بسط مؤلفههای جابجایی u(x,z,t)به ترتیب در دو جهت x و z، بر حسب مختصه ضخامت (z) به دست آمده اند :[16,17]

$$u(x, z, t) = u_o(x, t) + z \theta_x(x, t) + C_3 z^2 \bar{u}_o(x, t) + C_4 z^3 \bar{\theta}_x(x, t)$$
(1)

$$w(x, z, t) = w_o(x, t) + C_0 z \theta_z(x, t) + C_1 z^2 \bar{w}_o(x, t) + C_2 z^3 \bar{\theta}_z(x, t)$$
(-1)

در روابط (1) عبارتهای C_0 تا C_4 ضرایب تعیین کننده نوع تئوری به کار رفته هستند. هر یک از این ضرایب، متناسب با دقت تئوری و نسبت ضخامت پوسته، مقادیر صفر یا یک را اتخاذ میکنند که در این مقاله برای تئوری مرتبه اول میرسکی- هرمان C_1 تا C_4 را برابر صفر در نظر گرفته شده و برای تئوری مرتبه بالا C_{4} تا C_{4} برابر یک در نظر می گیریم.

عبارتهای u و w جابجاییهای یک نقطه دلخواه (x, z) و به ترتیب در (ϕ) جهات x و z هستند و به علت فرض متقارن محوری در راستای محیطی (ϕ) w_o جابجایی نداریم و t زمان است. پارامترهای u_o جابجایی در راستای x و جابجایی شعاعی در راستای z بر روی سطح میانی است. تابع θ_x چرخش عمود بر سطح میانی المان پوسته در صفحهی x-z است. در تئوری کلاسیک،

Linear elasticity theory

² Trapezoidal shape of shell's cross-section 3 Shock

⁴ Steady state ⁵ Elsato- Dynamic

⁶ Isotropic

 ⁷ homogeneous
 ⁸ Taylor series expansion

 $\bar{\epsilon}_{z0} = 3C_2 \,\theta_z(x,t)$

 $\chi_{xz} = 2C_3 \, \bar{u}_o(x,t)$

 $\bar{\chi}_{xz} = C_2 \,\partial_x \theta_z(x,t)$

 σ_x

 σ_{ϕ}

 σ_{z}

 $\sigma_{x\phi}$

 σ_{xz}

 σ_{ϕ_2}

 $C_{11} = \mu + 2G$

 $C_{12} = \mu$ $C_{44} = G$

 $\bar{\sigma} = D \bar{\epsilon}$

 $D = \begin{pmatrix} D_f \\ 0 \end{pmatrix}$

0 $\binom{v}{k_o D_s}$

 $+C_o \partial_x \theta_z(x,t)$

 $\beta_x = \theta_x(x,t) + \partial_x w_o(x,t)$

0

0

0

0

0

 C_{44}

νΕ

 $\mu = \frac{1}{(1-\nu)(1-2\nu)}$

(5)

(6)

(7)

(8)

(9)

است [22].

(10)

(11)

زير تعريف شده است:

عبارتاند از [21]:

 ϵ_{χ}

 ϵ_{ϕ}

 ϵ_z

 $\gamma_{x\phi}$

 γ_{xz}

Yoz

به معادله زیر کاهش مییابد:

 $\beta_x = 3C_4 \,\theta_x(x,t)$

0

0

0

0

 C_{44}

0

که ضرایب \mathcal{C}_{ij} بهصورت زیر تعریف میشوند:

 $G = \frac{1}{2(1+\nu)}$

که ماتریس D بهصورت زیر تعریف میشود:

سطح میانی € مطابق زیر تعریف میشوند:

روابط تنش- کرنش برای مواد ایزوتروپیک و همگن طبق قانون هوک 2

 C_{12}

 C_{11}

0

0

0

که در رابطه (6) تنشهای $\sigma_{\phi z}$ و $\sigma_{\phi z}$ صفر میباشند و E مدول یانگ، (6)

که ماتریسهای D_f و D_s در پیوست الف و نحوهی محاسبه انتگرالهای مربوطه، شامل عبارات $\frac{2}{R}+1$ در مخرج کسر، در پیوست ب آورده شده است. D_s همچنین k_o ضریب تصحیح برشی است که در ماتریس سفتی برشی k_o

ضرب شده است. معمولا براساس تئوري ميندلين^۴، فرض مي شود

باشد. که در اینجا برای تئوری مرتبه اول میرسکی- هرمان $k_o = \pi^2/12$

آن را برابر مقدار فرض شده در تئوری میندلین در نظر گرفته شده ولی برای تئوری مرتبه بالا نیاز به ضریب تصحیح برشی نیست و برابر یک فرض شده

در معادله (8) مؤلفههای بردار منتجه تنش $ar{\sigma}$ و مؤلفههای بردار کرنش

 $\bar{\sigma} = (N_x, N_\phi, \bar{N}_x, \bar{N}_\phi, N_z, \bar{N}_z, M_x, M_\phi, M_x, M_\phi, M_z, Q_x, Q_x)$

 $\bar{\epsilon} = (\epsilon_{x0}, \epsilon_{\phi0}, \bar{\epsilon}_{x0}, \bar{\epsilon}_{\phi0}, \epsilon_{z0}, \bar{\epsilon}_{z0}, \chi_x, \chi_{\phi}, \bar{\chi}_x, \bar{\chi}_{\phi}, \chi_z, \beta_x, \beta_x$

که در رابطه (10) بردار منتجه تنش^۵ برای پوسته ایزوتروپیک بهصورت

روابط μ ضریب پواسون، G مدول برشی و μ ثابت لامه $^{\pi}$ است. با جایگذاری روابط u

کرنش سطح میانی (5) در رابطهی (6) و انتگرال گیری در جهت ضخامت،

0

0

0

 C_{44}

0

0

 C_{11} C_{12} C_{12}

 C_{11}

 C_{12}

0

0

0

 C_{12}

 C_{12}

0

0

0

 $+C_1 \partial_x \bar{w}_o(x,t)$

Fig.1 Cylindrical shell (Axial symmetry)

شكل 1 پوسته استوانهاى (حالت متقارن محورى)

خط راست و عمود بر سطح میانی، پس از تغییر شکل، راست و عمود بر سطح میانی باقی میماند اما در تئوری تغییر شکل برشی مرتبه اول، خط راست و عمود بر سطح میانی، پس از تغییر شکل، راست باقی مانده ولی نسبت به سطح میانی عمود نیست. در تئوری تغییر شکل مرتبه بالا، خط راست و عمود بر سطح میانی، پس از تغییر شکل، راست باقی نمانده و نسبت به سطح میانی عمود نیست [18]. همچنین پارامترهای $ar{u}_o$ ، $ar{u}_o$ و $ar{u}_z$ عبارتهای مرتبه (18]. بالا در بسط تیلور هستند و نماینده مودهای تغییر شکل عرضی مقطع پوسته هستند و بهصورت زیر تعریف شدهاند:

$$\theta_{X} = \frac{\partial u}{\partial z}|_{z=0} \quad \bar{u}_{o} = \frac{1}{2} \frac{\partial^{2} u}{\partial z^{2}}|_{z=0} \quad \bar{\theta}_{X} = \frac{1}{6} \frac{\partial^{3} u}{\partial z^{3}}|_{z=0}$$
$$\theta_{z} = \frac{\partial u}{\partial z}|_{z=0} \quad \bar{w}_{o} = \frac{1}{2} \frac{\partial^{2} u}{\partial z^{2}}|_{z=0} \quad \bar{\theta}_{z} = \frac{1}{6} \frac{\partial^{3} u}{\partial z^{3}}|_{z=0} \tag{2}$$

با تعريف كرنشها از تئوري الاستيسيته خطى براي يوستههاي استوانه-ای، روابط کرنش- جابحایی عمومی در دستگاه مختصات استوانهای بهصورت زير ميباشد [19.20]:

 $\gamma_{\phi z}$ و $\gamma_{x\phi} = \epsilon_{x\phi} + \epsilon_{\phi x}$ ، $\epsilon_{x\phi}$ ، $\epsilon_{\phi x}$ و $\gamma_{x\phi}$ (3) در رابطه (3) در (3) د با فرض تقارن محوری برابر صفر میباشند. با جایگذاری عبارتهای مربوط به جابجایی در هر نقطه که در روابط (1) داده شده است در روابط (3)، کرنشهای خطی برحسب جابجاییهای سطح میانی، برای هر مدل جابجایی را می توان به صورت زیر بدست آورد:

$$\begin{aligned} \epsilon_x &= \epsilon_{x0} + z \,\chi_x + z^2 \,\bar{\epsilon}_{x0} + z^3 \,\bar{\chi}_x \\ \epsilon_\phi &= \frac{\epsilon_{\phi 0} + z \,\chi_\phi + z^2 \,\bar{\epsilon}_{\phi 0} + z^3 \,\bar{\chi}_\phi}{1 + \frac{z}{R}} \\ \epsilon_z &= \epsilon_{z0} + z \,\chi_z + z^2 \,\bar{\epsilon}_{z0} \\ \gamma_{xz} &= \beta_x + z \,\chi_{xz} + z^2 \,\bar{\beta}_x + z^3 \,\bar{\chi}_{xz} \end{aligned}$$
(4)
make the matrix of the matrix of the matrix of the matrix of the matrix (4) and the matrix of the

محاسبهاند

$$\begin{split} \epsilon_{x0} &= \partial_x u_o(x,t) & \chi_x = \partial_x \theta_x(x,t) \\ \bar{\epsilon}_{x0} &= C_3 \partial_x \bar{u}_o(x,t) & \bar{\chi}_x = C_4 \partial_x \bar{\theta}_x(x,t) \\ \epsilon_{\phi 0} &= \frac{w_o(x,t)}{R} & \chi_{\phi} = \frac{C_0 \partial_z(x,t)}{R} \\ \bar{\epsilon}_{\phi 0} &= \frac{C_1 \bar{w}_o(x,t)}{R} & \bar{\chi}_{\phi} = \frac{C_2 \bar{\theta}_z(x,t)}{R} \\ \epsilon_{z0} &= C_0 \theta_z(x,t) & \chi_z = 2C_1 \bar{w}_o(x,t) \end{split}$$

 $\begin{pmatrix} N_x & M_x & \bar{N}_x & \bar{M}_x \\ Q_x & S_x & \bar{Q}_x & \bar{S}_x \end{pmatrix} = \int_{-h}^{\frac{z}{2}} \begin{pmatrix} \sigma_x \\ \sigma_{XZ} \end{pmatrix} \cdot (1, z, z^2, z^3) (1 + \frac{z}{R}) dz$ $(N_{\phi} \quad M_{\phi} \quad \bar{N}_{\phi} \quad \bar{M}_{\phi}) = \int_{-h}^{\frac{h}{2}} (\sigma_{\phi}) \cdot (1 \quad z \quad z^2 \quad z^3) dz$

$$(N_z \quad M_z \quad \bar{N}_z) = \int_{\frac{-h}{2}}^{\frac{h}{2}} (\sigma_z) \cdot (1 \quad z \quad z^2) (1 + \frac{z}{R}) dz$$
(12)

2 Hook law ³ Lame

Mindlin

 $, S_x, S_x)$

, χ_{xz} , χ_{xz})

5 Resultant stress

429

DOR: 20.1001.1.10275940.1396.17.9.50.6

¹ Transverse shear deformation

$$\begin{split} \delta \bar{u}_{o} &: \frac{\partial \bar{N}_{x}}{\partial x} - 2 S_{x} - \frac{\partial^{2} u_{o}}{\partial t^{2}} \bar{I}_{2} - \frac{\partial^{2} \theta_{x}}{\partial t^{2}} \bar{I}_{3} - \frac{\partial^{2} \bar{u}_{o}}{\partial t^{2}} \bar{I}_{4} - \frac{\partial^{2} \bar{\theta}_{x}}{\partial t^{2}} \bar{I}_{5} \\ &= 0 & (z^{-18}) \end{split}$$

$$\delta \bar{w}_{o} &: \frac{-1}{R} \bar{N}_{\phi} - 2M_{z} + \frac{\partial \bar{Q}_{x}}{\partial x} - \frac{\partial^{2} w_{o}}{\partial t^{2}} \bar{I}_{2} - \frac{\partial^{2} \theta_{z}}{\partial t^{2}} \bar{I}_{3} - \frac{\partial^{2} \bar{w}_{o}}{\partial t^{2}} \bar{I}_{4} \\ &- \frac{\partial^{2} \bar{\theta}}{\partial t^{2}} \bar{I}_{5} - \frac{h^{2}}{4} (q_{t} - q_{b}) = 0 & (z^{-18}) \end{aligned}$$

$$\delta \bar{\theta}_{x} : \frac{\partial \bar{M}_{x}}{\partial x} - 3 \bar{Q}_{x} - \frac{\partial^{2} u_{o}}{\partial t^{2}} \bar{I}_{3} - \frac{\partial^{2} \theta_{x}}{\partial t^{2}} \bar{I}_{4} - \frac{\partial^{2} \bar{u}_{o}}{\partial t^{2}} \bar{I}_{5} - \frac{\partial^{2} \bar{\theta}_{x}}{\partial t^{2}} \bar{I}_{6} \\ &= 0 & (\dot{\tau}^{-18}) \end{split}$$

$$\begin{split} \delta\bar{\theta}_{Z} &: \frac{-1}{R}\bar{M}_{\phi} - 3\bar{N}_{Z} + \frac{\partial\bar{S}_{x}}{\partial x} - \frac{\partial^{2}w_{o}}{\partial t^{2}}\bar{I}_{3} - \frac{\partial^{2}\theta_{z}}{\partial t^{2}}\bar{I}_{4} - \frac{\partial^{2}\bar{w}_{o}}{\partial t^{2}}\bar{I}_{5} \\ &- \frac{\partial^{2}\bar{\theta}_{z}}{\partial t^{2}}\bar{I}_{6} - \frac{h^{3}}{8}(q_{t} - q_{b}) = 0 \end{split} \tag{2-18}$$

$$c_{t} (\text{elyd} (18) |_{\text{Lit}(w_{s})} \approx c_{t} + c_$$

$$(\bar{I}_{0} \quad \bar{I}_{1} \quad \bar{I}_{2} \quad \bar{I}_{3} \quad \bar{I}_{4} \quad \bar{I}_{5} \quad \bar{I}_{6}) = \int_{\frac{-h}{2}}^{\frac{h}{2}} \rho \left(1 \quad z \quad z^{2} \quad z^{3} \quad z^{4} \quad z^{5} \quad z^{6}\right) (1 + \frac{z}{R}) dz$$
(19)

5- مدل تحليلي

با قرار دادن منتجههای تنش از رابطهی (10) در روابط (18) معادلات حرکت استوانه، بهصورت ماتریسی برحسب مؤلفههای جابجایی به شرح زیر بیان میشود:

$$L_{1} \frac{\partial^{2} y}{\partial x^{2}} + L_{2} \frac{\partial y}{\partial x} + L_{3} y + L_{4} \frac{\partial^{2} y}{\partial t^{2}} + F = 0$$
(20)

$$\sum_{k=1}^{\infty} k_{k} \sum_{k=1}^{\infty} k_{k}$$

بوده و تابعی از خواص مکانیکی، فیزیکی و مشخصات هندسیاند و در پیوست ج آورده شدهاند. همچنین y بردار جابجایی بوده و بهصورت زیر نمایش داده می شود:

$$y = (u_o, w_o, \theta_x, \theta_z, \bar{u}_o, \bar{w}_o, \bar{\theta}_x, \bar{\theta}_z)^{\mathrm{T}}$$
(21)

$$F = q_b (0, 1, 0, -\frac{h}{2}, 0, \frac{h^2}{4}, 0, -\frac{h^3}{8})^{\mathrm{T}}$$
(22)

$$q_b = P(1 - \frac{n}{2R}) \tag{23}$$

در رابطه (23)، P پروفیل فشار، وارد بر جدارهی داخلی پوسته استوانهای میباشد که میتوان وابسته به نوع بارگذاری و کاربرد آن، پروفیلهای متفاوتی را در نظر گرفت. در این مقاله پروفیل بارگذاری را بهصورت متحرک و فشاری، بر سطح داخلی استوانه و بهصورت زیر در نظر گرفته شده است:

$$P(x,t) = \begin{pmatrix} P_1 + (P_0 - P_1)e^{-(x-Vt)}, x - Vt \le 0\\ 0, x - Vt \ge 0 \end{pmatrix}$$
(24)

که در رابطه (24) که در این رابطه (x, t) فشارداخلی وارد شده بر استوانه است. پارامتر V، سرعت بارگذاری فشاری بوده، P_1 P_0 مقادیر ثابت فشار هستند. توزیع فشار داخلی در این حالت نسبت به مکان و زمان به صورت نمایی تغییر کرده و در طول استوانه با سرعت ثابت حرکت میکند.

توابع میدان جابجایی در پوسته استوانهای طویل بهصورت زیر تعریف میشود [6]:

 $y = D e^{-i\alpha(x-Vt)}$ $D = (D_1 D_2 D_3 D_4 D_5 D_6 D_7)^{T}$ (25) به طوری که *i* عدد مختلط، *a* عدد موج و *V* سرعت حرکت جبههی موج^۲ است. برای حل معادلات، ابتدا با تغییر متغیر $\bar{\eta} = x - Vt$ معادلات حاکم برحسب $\bar{\eta}$ بهدست میآیند. تغییر متغیر منع 3- معادلات حركت

برای تعیین معادلات حرکت استوانه از اصل همیلتون ٔ استفاده می شود. حالت کلی اصل همیلتون به طریق زیر بیان می شود [20]:

$$\int_{t_1}^{t_2} (U - W - K) \, dt = 0 \tag{13}$$

$$U = \frac{1}{2} \iiint U\sigma_{ij}\epsilon_{ij} \, dV = \frac{1}{2} \int_0^L \int_0^{2\pi} \int_{-\frac{h}{2}}^{\frac{h}{2}} (\sigma_x \epsilon_x + \sigma_\phi \epsilon_\phi + \sigma_z \epsilon_z + \sigma_{\phi x} \epsilon_{\phi x} + \sigma_{xz} \epsilon_{xz} + \sigma_{\phi z} \epsilon_{\phi z}) \, dA \, dz$$

$$(1)$$

ده در رابطه (۱4)، تعریف المان سطح پوسته به صورت زیر است:
$$dA = R(1 + \frac{z}{R}) \, dx d\phi$$
 (15)

لا در رابطه (13) عبارت است از انرژی پتانسیل ناشی از نیروی خارجی W است و بهصورت زیر تعریف میشود:

$$W = \int_{0}^{L} \int_{0}^{2\pi} (q_{t}(z = \frac{h}{2}) + q_{b}(z = \frac{-h}{2})) dA$$
(16)

q_b و q_b فشارهای گسترده وارد بر سطوح به ترتیب خارجی و داخلی پوسته هستند که در این مقاله q_t برابر صفر در نظر گرفته شده است.

K در رابطه (13) عبارت است از انرژی جنبشی و بهصورت زیر تعریف شده است: شده است:

$$K = \frac{1}{2} \iiint \rho (\dot{u}^2 + \dot{v}^2 + \dot{w}^2) \, dV =$$

$$\frac{1}{2} \int_0^L \int_0^{2\pi} \int_{-\frac{h}{2}}^{\frac{h}{2}} \rho (\dot{u}^2 + \dot{v}^2 + \dot{w}^2) \, dA \, dz \qquad (17)$$

$$\sum_{k=0}^{2} \sum_{j=0}^{k} \rho_{j} (iz_{j}^{2}) - z_{j} z_{j}^{2} + iz_{j}^{2} - z_{j} z_{j}^{2} + iz_{j}^{2} + iz_{j}^{2}$$

که در رابطه (/1)، ρ معرف چکالی است و در انرژی جنبشی بالانویس نقطه نشان دهنده مشتق نسبت به زمان است.

4- استخراج معادلات حاكم

پس از محاسبه عبارتهای مربوط به کار و انرژی در اصل همیلتون، رابطه (13)، امکان استخراج معادلات تعادل پوسته را فراهم می سازد. بدین نحو که برمبنای قضیه اساسی حساب تغییرات، مجموع کل ضرایب عبارتهای δu_o ، برمبنای قضیه اساسی حساب تغییرات، مجموع کل ضرایب عبارتهای δu_o ، δu_o ، مرمنای قضیه اساسی δv_o ، $\delta \bar{\theta}_z$ و $\delta \bar{\theta}^{\delta}$ در عبارات زیر انتگرالهای دوگانه بایستی برابر صفر قرار داده شوند. با انجام این کار، پس از مرتبسازی، معادلات آمدهاند:

$$\delta u_o: \frac{\partial N_x}{\partial x} - \frac{\partial^2 u_o}{\partial t^2} \bar{I}_0 - \frac{\partial^2 \theta_x}{\partial t^2} \bar{I}_1 - \frac{\partial^2 \bar{u}_o}{\partial t^2} \bar{I}_2 - \frac{\partial^2 \bar{\theta}_x}{\partial t^2} \bar{I}_3 = 0$$

$$(ja) = -18$$

$$\delta w_o : \frac{-1}{R} N_{\phi} + \frac{\partial Q_x}{\partial x} - \frac{\partial^2 w_o}{\partial t^2} \bar{I}_0 - \frac{\partial^2 \theta_z}{\partial t^2} \bar{I}_1 - \frac{\partial^2 \bar{w}_o}{\partial t^2} \bar{I}_2 - \frac{\partial^2 \bar{\theta}_z}{\partial t^2} \bar{I}_3 - q_t - q_b = 0 \qquad (-18)$$

$$\delta\theta_{x}:\frac{\partial M_{x}}{\partial x}-Q_{x}-\frac{\partial^{2}u_{o}}{\partial t^{2}}\bar{I}_{1}-\frac{\partial^{2}\theta_{x}}{\partial t^{2}}\bar{I}_{2}-\frac{\partial^{2}\bar{u}_{o}}{\partial t^{2}}\bar{I}_{3}-\frac{\partial^{2}\bar{\theta}_{x}}{\partial t^{2}}\bar{I}_{4}=0$$

$$(\downarrow -18)$$

$$\begin{split} \delta\theta_{z} &: \frac{-1}{R}M_{\phi} - N_{z} + \frac{\partial S_{x}}{\partial x} - \frac{\partial^{2}w_{o}}{\partial t^{2}}\bar{I}_{1} - \frac{\partial^{2}\theta_{z}}{\partial t^{2}}\bar{I}_{2} - \frac{\partial^{2}\bar{w}_{o}}{\partial t^{2}}\bar{I}_{3} \\ &- \frac{\partial^{2}\bar{\theta}_{z}}{\partial t^{2}}\bar{I}_{4} - \frac{h}{2}(q_{t} - q_{b}) = 0 \end{split}$$

$$(\because -18)$$

² Pressure front

¹ Hamilton's principle

Fig.2 Pressure front- Dimensionless variable of $\bar{\eta}$

 $ar{\eta}$ شكل 2 جبهه موج- متغير بىبعد $ar{\eta}$

،II مرتبط با منطقه $\bar{\eta} < 0$ و $\bar{\eta} < \alpha_{j=1,...,7}$ مرتبط با منطقه $\alpha_{j=1,...,7}$ مرتبط با منطقه به مرتبط با منطقه با منطقه به مرتبط با منطقه به مرتبط با منطقه به مرتبط با مرتبط با م

$$y_g^{\ I} = \left(w_o \ \theta_x \ \theta_z \ \bar{u}_o \ \bar{w}_o \ \bar{\theta}_x \ \bar{\theta}_z\right)_I^{\mathrm{T}} = \sum_{j=1}^7 K_j \ D_j \ e^{-i\alpha_j \bar{\eta}}$$
(33)

$$y_{g}^{II} = \left(w_{o} \; \theta_{x} \; \theta_{z} \; \bar{u}_{o} \; \bar{w}_{o} \; \bar{\theta}_{x} \; \bar{\theta}_{z}\right)_{II}^{\mathrm{T}} = \sum_{j=8}^{14} K_{j} \; D_{j} \; e^{-i\alpha_{j}\bar{\eta}} \tag{34}$$

حل خصوصی معادله به توزیع بارگذاری بستگی دارد که در رابطه (24) به آن اشاره شده است. بنابراین حل خصوصی را به شکل + $\bar{R} = K_1 e^{-\bar{\eta}}$ به آن اشاره شده است. بنابراین حل خصوصی را به شکل + $K_2 e^{-\bar{\eta}}$ تعیین K_2 در نظر گرفته و با قرار دادن در معادله (28) بردارهای K و K_2 تعیین میشود. نکته قابل توجه در تعیین جواب خصوصی برای منطقه II، این است که چون در این ناحیه هنوز جبههی موج، منطقه را در بر نگرفته است پس در نتیجه بارگذاری ای به استوانه وارد نمی شود و جواب خصوصی برای این ناحیه صفر خواهد بود. بنابراین فرم کلی جوابها در هر دو ناحیه را می توان به صورت زیر نشان داد:

$$y_g{}^I = \sum_{j=1}^{\prime} K_j D_j e^{-i\alpha_j \bar{\eta}} + \left(w_o \theta_x \theta_z \bar{u}_o \bar{w}_o \bar{\theta}_x \bar{\theta}_z \right)_p^{\mathrm{T}}$$
(35)

$$y_g^{II} = \sum_{j=8}^{11} K_j D_j e^{-i\alpha_j \bar{\eta}}$$
(36)

که ثابتهای K_j با اعمال شرایط پیوستگی مسأله در $ar{\eta}=0$ بهدست

میآیند. شرایط پیوستگی به صورت زیر است:

$$w_1 = w_2$$
 $\partial_x w_1 = \partial_x w_2$
 $\partial_x w_1 = \partial_x w_2$
 $\theta_{x_1} = \theta_{x_2}$
 $\partial_x \theta_{x_1} = \partial_x \theta_{x_2}$
 $\theta_{z_1} = \theta_{z_2}$
 $\partial_x \theta_{z_1} = \partial_x \theta_{z_2}$
 $\bar{u}_{o_1} = \bar{u}_{o_2}$
 $\partial_x \bar{u}_{o_1} = \partial_x \bar{u}_{o_2}$
 $\bar{w}_1 = \bar{w}_2$
 $\partial_x \bar{w}_1 = \partial_x \bar{w}_2$
 $\bar{\theta}_{x_1} = \bar{\theta}_{x_2}$
 $\partial_x \bar{\theta}_{z_1} = \partial_x \bar{\theta}_{z_2}$
 $\bar{\theta}_{z_1} = \bar{\theta}_{z_2}$
 $\partial_x \bar{\theta}_{z_1} = \partial_x \bar{\theta}_{z_2}$
 (37)
 $w_1 = u_{o_2}$
 $\partial_x u_{o_1} = \partial_x u_{o_2}$
 $\bar{\theta}_x u_{o_2}$

بارگذاری وارد میشود و اندیس دو مربوط به منطقه II، که بارگذاری برابر صفر میباشد.

6- روش المان محدود

برای این منظور از نرمافزار آباکوس^۲ نسخه 6.14 جهت مدلسازی و تحلیل نتایج استفاده شده است. در مدلسازی، مقطع هندسی استوانه با فرض متقارن محوری بهصورت مستطیل بوده و تحلیل مسأله دو بعدی است. مدل

² Abaqus

¹ Newton- Raphson

بدین ترتیب هشت معادله دیفرانسیل جزئی در رابطه (20)، به هشت معادله دیفرانسیل معمولی زیر برحسب $ar{\eta}$ تبدیل میشود:

$$L_{1} \frac{\partial^{2} y}{\partial \bar{\eta}^{2}} + L_{2} \frac{\partial y}{\partial \bar{\eta}} + L_{3} y + L_{4} V^{2} \frac{\partial^{2} y}{\partial \bar{\eta}^{2}} + F = 0$$
(26)

در رابطه (26)، ضرایب جابجایی u₀ در تمامی هشت معادله حاکم برابر صفر است و تنها مشتق مرتبه اول و دوم آن در روابط ظاهر میشود. از اینرو با توجه به معادله اول رابطه (26)، أ*0*لم بهصورت زیر بهدست میآید:

$$\frac{\partial u_o}{\partial \bar{\eta}} = \left(\frac{1}{R(V^2 \bar{I}_0 - (2G + \mu)H_1)} (\mu H_1 w_o(\bar{\eta}) + R \mu H_1 \theta_z(\bar{\eta}) + (\mu H_3 + 2R \mu H_2) \bar{w}_o(\bar{\eta}) + 3R \mu H_3 \bar{\theta}_z(\bar{\eta}) + (-R V^2 \bar{I}_1 + 2G R H_2 + R \mu H_2) \theta_x'(\bar{\eta}) + (-R V^2 \bar{I}_2 + 2G R H_3 + R \mu H_3) \bar{u}_o'(\bar{\eta}) + (-R V^2 \bar{I}_3 + 2G R H_4 + R \mu H_4) \bar{\theta}_x'(\bar{\eta}) \right)$$
(27)

مجهول کاهش مییابد:

$$L_5 \frac{\partial^2 y}{\partial \bar{\eta}^2} + L_6 \frac{\partial y}{\partial \bar{\eta}} + L_7 y + L_8 V^2 \frac{\partial^2 y}{\partial \bar{\eta}^2} + F = 0$$
(28)

که در رابطه (28)،ضرایب L_5 ، L_6 ، L_6 و h_8 ماتریسهای 7×7 و ثابتی هستند که در پیوست ج آورده شدهاند. پس از کاهش معادلات، مؤلفههای بردار جابجایی y و F که در روابط (21) و (22) ذکر شدهاند، بهصورت زیر بازنویسی می شوند:

$$y = (w_o, \theta_x, \theta_z, \bar{u}_o, \bar{w}_o, \bar{\theta}_x, \bar{\theta}_z)^{\mathrm{T}}$$

$$F = P(1 - \frac{h}{2})(1, 0, -\frac{h}{2}, 0, \frac{h^2}{2}, 0, -\frac{h^3}{2})^{\mathrm{T}}$$
(29)
(30)

$$2R^{(1)}(1,0), 2,0,4,0,8$$
 و 2,0,4 ,0, 8 , 2,0,0 , 1,0,0 , 2,0,1 , 2

 $(-\alpha^{2} L_{5} - i \alpha L_{6} + L_{7} - \alpha^{2} L_{8} V^{2}) D e^{-i\alpha \bar{\eta}} = 0$ (31) $D e^{-i\alpha \bar{\eta}}$ (31) and $D e^{-i\alpha \bar{\eta}}$ (31) $D e^{-i\alpha \bar{\eta}}$ (31)

معادله مشخصه سامانه به فرم کلی زیر بهدست میآید. $\delta_1 \alpha^{14} + \delta_2 \alpha^{12} + \delta_3 \alpha^{10} \delta_4 \alpha^8 + \delta_5 \alpha^6 + \delta_6 \alpha^4 + \delta_7 \alpha^2 + \delta_8$ = 0 (32)

که δ_i ضرایبی ثابت میباشند و با حل رابطه (32) به روش نیوتن-رافسون^۱، چهارده ریشه مختلط و مزدوج بهدست میآید. باجایگذاری در معادلات همگن، بردارهای ویژه بهازای هر مقدار α محاسبه میگردد.

با توجه به معرفی متغیر \bar{n} مطابق "شکل 2" دو منطقه به وجود می آید. در منطقه I \bar{n} منفی میباشد و موج از آن مناطق رد شده است. در منطقه ای \bar{n} منفی میباشد و موج از آن مناطق زر سیده است. در نتیجه برای بهدست آوردن جوابهای فیزیکی قابل قبول، ما نیازمند آن هستیم که تمام جابجاییها از $\overline{m} \to \overline{m}$ پیوسته باشند. به همین دلیل زمانی که $\overline{m} \to \overline{m}$ میل می کند، تنها هفت ریشه از چهارده ریشه معادله مشخصه که باعث می شوند جابحاییها، قبل از جبهه موج پیوسته باشند را میتوان به عنوان میل می کند، تنها هفت ریشه از جهه موج پیوسته باشند را میتوان به عنوان به مین دنیا ترای ناحیه $0 > \overline{n}$ در نظر گرفت و زمانی که $\overline{m} \to \overline{n}$ میل می کند، تنها هفت ریشه از جبهه موج پیوسته باشند را میتوان به عنوان به عنوان ناحیه ای ترام از جبهه موج پیوسته باشند را میتوان به می کند، تنها هفت ریشه از جهارده ریشه معادله مشخصه که باعث می شوند تنها هفت ریشه از جهارده ریشه معادله مشخصه که باعث می توان توانی که $\overline{n} \to \overline{n}$ میل می کند، تنها مفت ریشه از جهارده ریشه معادله مشخصه که باعث می توان تاحیه $0 > \overline{n}$ در نظر گرفت و زمانی که می حمل کن باعث می توان به عنوان باسخ برای تاحیه از جبهه موج پیوسته باشند را میتوان پاسخ برای تاحیه از جبهه موج پیوسته باشند می توان به عنوان تاحیه از تا می می در تر می توان باعث می توان تاحیه از تر تا خوان به عاد مشخصه که باعث می توان تا حیا می کند، تنها هفت ریشه از جربه موج پیوسته باشند را میتوان پاسخ برای تاحیه از می توان پاسخ برای تاحیه از می توان به عنوان پاسخ برای تاحیه از می توان به می تو در می توان به عنوان به می توان به عنوان به عنوان با می توان با می توان با می توان به عنوان پا خول تا تا می توان به عنوان پا خو برای تر می توان به می تو در نظر گرفت.

Fig. 5 Radial displacement of the middle layer along x at the time of 6 ms

شکل 5 جابجایی شعاعی لایه میانی در زمان 6 میلی ثانیه

شکل 6 جابجایی شعاعی لایه میانی در طول پوسته در زمان 10 میلی ثانیه

میدهند. مطابق "شکل 5 و 6" شرط مرزی تأثیری بر نتایج در نواحی دور از مرز در استوانههای طویل ندارد. همانطور که از "شکلهای 5 و 6" مشخص است جابجایی شعاعی بر روی لایهی میانی با استفاده از تئوری مرتبه بالا و تئوری مرتبه پایین در زمانهای متفاوت اختلاف بسیار کمی با هم دارند زیرا در هر دو تئوری، روی لایه میانی 2 = 2 است و این امر باعث میشود که ترمهای مرتبه بالاتر میدان جابجایی اثرات خود را در جابجایی کل لحاظ نکنند و هر دو تئوری نتایج بسیار نزدیکی را در لایهی میانی داشته باشد.

نحوه حرکت جبههی موج در طول پوسته در زمانهای شش و ده میلیثانیه در "شکل 7" نشان داده شده است.

جابجایی شعاعی جدار خارجی در طول پوسته با روش المان محدود، تئوری مرتبه بالا و تئوری مرتبه اول در زمان شش میلی ثانیه در "شکل 8" نشان داده شده است.

مطابق "شکل 8" در نواحی دور از مرز حد اکثر اختلاف بین روش تئوری مرتبه بالا و المان محدود حدود 5 درصد است اما این اختلاف بین تئوری مرتبه اول و المان محدود، حدود 16 درصد می باشد که این امر نشان می دهد که در لایه های خارجی تر، دقت تئوری مرتبه بالا نسبت به تئوری مرتبه اول خطی به خصوص برای ضخامت های بالای پوسته، معتبرتر است. هندسی و شرایط مرزی در "شکل 3" نشان داده شده است. جنس و مشخصات هندسی پوسته در جدول 1 نشان داده شده است.

برای تحلیل بارگذاری فشاری متحرک از حلگر ضمنی^۱، در نرمافزار استفاده شده است. پوسته استوانهای در x=0 گیردار و در x=L آزاد است. برای اعمال پروفیل فشار در رابطه (24) از سابروتین نویسی^۲ در نرمافزار آباکوس به زبان فرترن^۳ استفاده شده است. نوع المان انتخابی با توجه به اینکه تحلیل تنش پوسته استوانهای با فرض تقارن محوری مدنظر قرار گرفته است، از المان CAX8R استفاده شده است. این المانها چهار ضلعی، متقارن محوری و مرتبه دوم (غیرخطی) بوده و تعداد گرهها در هر المان برابر هشت است. المانبندی در "شکل 4" نشان داده شده است.

7- نتايج

جابجایی شعاعی در لایه میانی در طول پوسته استوانهای به سه روش المان محدود، تئوری مرتبه اول و تئوری مرتبه بالا در زمان شش میلی ثانیه در "شکل 5" نشان داده شده است.

در "شکل 5" نتایج جابجایی شعاعی لایه میانی در نواحی دور از مرز برای هر سه روش تطابق بسیار خوبی با هم دارند بدین صورت که حد اکثر اختلاف بین روشها در نواحی دور از مرز 2.5 درصد است.

جابجایی شعاعی لایه میانی در طول پوسته در زمان ده میلیثانیه در "شکل 6" نشان داده شده است.

نتایج حاصل از هر سه روش تطابق بسیار خوبی را در لایه میانی نشان

Fig.3 Model of geometry and boundary condition شکل 3 مدل هندسی و شرایط مرزی

Fig.4 Meshed instance of axisymmetric cylindrical shell شكل 4 المان بندى پوسته استوانهاى متقارن

جدول 1 جنس و مشخصات هندسی پوسته استوانهای

	racteristic of shell	and geometric char	Table 1 Material
مشخصه هندسى	نماد	واحد	مقدار
طول	L	m	4.76
شعاع متوسط	R	m	0.1
ضخامت	h	m	0.1
چگالی	ρ	kg/m ³	7861
مدول يانگ	Ε	GPa	209
ضريب پواسون	ν	-	0.3
سرعت بارگذاری	V	m/s	405.45
فشار پیک	P_o	MPa	334
فشار اوليه	P_1	MPa	31.72

¹ Implicit solver

² Subroutine

3 Fortran

Fig.9 Radial displacement of the inner layer along x at the times of 6 ms

شکل 10 جابجایی شعاعی در طول ضخامت پوسته

جدار داخلی و جدار خارجی حرکت کنیم، دیگر جابجایی شعاعی خطی تغییر نمی کند بلکه رفتار آن منحنی شکل خواهد بود. حد اکثر اختلاف بین روش المان محدود و تئوری مرتبه بالا در این حالت در جدار داخلی رخ می دهد و حدود 10 درصد است و حد اکثر اختلاف بین روش المان محدود و تئوری مرتبه اول خطی در این حالت در جدار داخلی، حدود 33 درصد است.

جابجایی محوری لایه داخلی، لایه میانی و لایه خارجی با استفاده از روش المان محدود در طول پوسته و در زمان شش میلی ثانیه در "شکل 11" نشان داده شده است.

با توجه به "شکل 11" جابجایی محوری در طول پوسته استوانهای به جزء درناحیهی اطراف جبههی موج که فشار ماکزیمم است در هر سه لایه داخلی، میانی و خارجی نتایج تقریبا برهم منطبقاند زیرا پروفیل فشار وارد شده بر پوسته در راستای شعاعی پوسته اعمال می شود و مؤلفهای در راستای محوری ندارد.

تنش شعاعی لایه داخلی، لایه میانی و لایه خارجی با استفاده از روش المان محدود در طول پوسته و در زمان شش میلی ثانیه در "شکل 12" نشان داده شده است.

لایه داخلی چون تحت تاثیر بارگذاری میباشد، تغییرات تنش شعاعی آن نسبت به لایه میانی و لایه خارجی که در لایههای دورتری قرار دارند و مستقیماً بارگذاری بر روی این لایهها صورت نمی گیرد، بیشتر است.

تنش محیطی لایه داخلی، لایه میانی و لایه خارجی با استفاده از روش

Fig.7 Radial displacement of the middle layer along *x* at the times of 6 and 10 ms

شكل 7 جابجايي شعاعي لايه مياني در طول پوسته در زمان 6 و 10 ميلي ثانيه

Fig.8 Radial displacement of the outter layer along x at the times of 6 ms شکل 8 جابجایی شعاعی لایه خارجی در طول پوسته در زمان 6 میلی ثانیه

اثرات ترمهای مرتبه بالای در نظر گرفته شده در تئوری مرتبه بالا نسبت به تئوری مرتبه اول و تاثیر آن بر کاهش اختلاف نتایج با روش المان محدود در لایه دور از لایهی میانی کاملا محسوس است.

جابجایی شعاعی جدار داخلی در طول پوسته با استفاده روش المان محدود، تئوری مرتبه بالا و تئوری مرتبه اول در زمان شش میلی ثانیه در "شکل 9" نشان داده شده است.

مطابق "شکل 9" در نواحی دور از مرز حد اکثر اختلاف بین روش تئوری مرتبه بالا و المان محدود حدود 9 درصد است اما این اختلاف بین تئوری مرتبه اول و المان محدود، حدود 28 درصد میباشد که این امر نشان میدهد که در لایههای داخلیتر، دقت تئوری مرتبه بالا نسب به تئوری مرتبه اول خطی برای نواحی دورتر از لایهی میانی، معتبرتر است. اختلاف بین هر سه روش در لایه داخلی از اینرو افزایش مییابد که این لایه تحت بارگذاری متحرک دینامیکی است و تغییرات جابجایی در این لایه نسبت به لایههای دورتر محسوستر است.

جابجایی شعاعی در راستای ضخامت پوسته در مکان x = L/3 و در زمان شش میلی ثانیه در "شکل 10" برای دو روش تحلیلی تئوری مرتبه بالا و مرتبه اول خطی و المان محدود نشان داده شده است.

با توجه به "شکل 10" توزیع جاجایی شعاعی در نواحی اطراف لایه میانی تقریبا خطی است اما هرچه از لایهی میانی دورتر شده و به سمت

Fig.11 Axial displacement of the inner, middle and outter layer along x at the times of 6 ms with finite element method

شکل 11 جابجایی محوری لایه داخلی، میانی و خارجی در طول پوسته در زمان 6 میلی ثانیه با استفاده از روش المان محدود

Fig. 12 Radial Stress of the inner, middle and outter layer along x at the times of 6 ms with finite element method

شکل 12 تنش شعاعی لایه داخلی، میانی و خارجی در طول پوسته در زمان 6 میلی ثانیه با استفاده از روش المان محدود

المان محدود در طول پوسته و در زمان شش میلی ثانیه در "شکل 13" نشان داده شده است.

Fig.13 Circumferential Stress of the inner, middle and outter layer along x at the times of 6 ms with finite element method 6 شكل 13 تنش محيطى لايه داخلى، ميانى و خارجى در طول پوسته در زمان 6 ميلى ثانيه با استفاده از روش المان محدود

8- نتیجه گیری

با استفاده از تئوری تغییر شکل مرتبه بالا پاسخ مدل به بارگذاری متحرک در حل تحلیلی با تقریب بسیار خوبی نسبت به نتایج روش المان محدود برای پیش بینی پاسخ دینامیکی پوسته استوانهای ضخیم بهدست آمد و دقت تئوری مرتبه بالا نسبت به تئوری مرتبه اول میرسکی- هرمان مورد مقایسه قرار گرفت. نتایج حاصل از هر سه روش نشان میدهد که در لایه میانی و نزدیک آن فرض خطی بودن میدان جابجایی، قابل قبول است و تقریبا با ترفیک آن فرض محلی بودن میدان جابجایی، قابل قبول است و تقریبا با گرفته و به سمت جداره داخلی و یا خارجی نزدیک تر شویم دیگر فرض خطی بودن توزیع میدان جابجایی به ویژه برای پوسته استوانهای جدار نازک میباشد دارای ضخامتی قابل توجه نسبت به پوسته استوانهای جدار نازک میباشد فرض منطقی تلقی نشده و شاهد آن هستیم که با خطای محسوسی نسبت به نتایج المان محدود مواجه خواهیم بود. لذا اهمیت فرض خطی بودن میدان جابجایی نسبت به ضخامت، در ضخامتهای کم برای توصیف جابجایی شعاعی مناسب بوده ولی با افزایش ضخامت بهتر است از میدان جابجایی مرتبه بالا برای توصیف میدان جابجایی استفاده کرد.

بررسی نتایج تئوری تغییر شکل بالا و مرتبه اول با نتایج المان محدود در پوسته استوانهای یکسر گیردار نشان میدهد که شرط مرزی تأثیری بر نتایج نواحی دور از مرز در استوانههای طویل ندارد و توصیف نتایج دینامیکی در نواحی دور از مرز مناسب است اما در نواحی مرزی با مدل تحلیلی بیان شده در این مقاله قابل بررسی نمی باشد.

9- پيوست الف

1-9-1 تعريف ماتريس 15×15

 D_s و D_f و H_j ، H_j در ماتریس های H_f و H_j ، H_j در ماتریس های D_f و T_s و T_s و معای فرده است.

درایههای ماتریس D_{f11×11} عبارتاند از:

$$\begin{split} D_{f_{11}} &= (2G + \mu)H_1, \ D_{f_{12}} = \mu H_1, \ D_{f_{13}} = (2G + \mu)H_3 \\ D_{f_{14}} &= \mu H_3, \ D_{f_{15}} = \mu H_1, \ D_{f_{16}} = \mu H_3, \ D_{f_{17}} = (2G + \mu)H_2 \\ D_{f_{18}} &= 0, \ D_{f_{19}} = (2G + \mu)H_4, \ D_{f_{110}} = 0, \ D_{f_{111}} = \mu H_2 \\ D_{f_{21}} &= \mu H_1, \ D_{f_{22}} = (2G + \mu)H_1, \ D_{f_{26}} = \mu H_3, \ D_{f_{27}} = 0 \\ D_{f_{28}} &= (2G + \mu)H_2, \ D_{f_{29}} = 0, \ D_{f_{210}} = (2G + \mu)H_4 \\ D_{f_{211}} &= 0, \ D_{f_{31}} = (2G + \mu)H_3, \ D_{f_{32}} = \mu H_3 \\ D_{f_{33}} &= (2G + \mu)H_5, \ D_{f_{34}} = \mu H_5, \ D_{f_{35}} = \mu H_3, \ D_{f_{36}} = \mu H_5 \\ D_{f_{37}} &= (2G + \mu)H_4, \ D_{f_{38}} = 0, \ D_{f_{39}} = (2G + \mu)H_6 \\ D_{f_{310}} &= 0, \ D_{f_{311}} = \mu H_4, \ D_{f_{41}} = \mu H_3, \ D_{f_{42}} = (2G + \mu)H_3 \\ D_{f_{46}} &= \mu H_5, \ D_{f_{47}} = 0, \ D_{f_{48}} = (2G + \mu)H_4, \ D_{f_{52}} = \mu H_1 \\ D_{f_{53}} &= \mu H_3, \ D_{f_{54}} = \mu H_3, \ D_{f_{55}} = (2G + \mu)H_1 \\ D_{f_{56}} &= (2G + \mu)H_3, \ D_{f_{57}} = \mu H_2, \ D_{f_{58}} = \mu H_2 \\ D_{f_{56}} &= (2G + \mu)H_3, \ D_{f_{57}} = \mu H_2, \ D_{f_{58}} = \mu H_2 \\ D_{f_{59}} &= \mu H_4, \ D_{f_{510}} = \mu H_4, \ D_{f_{511}} = (2G + \mu)H_2 \\ D_{f_{61}} &= \mu H_3, \ D_{f_{62}} = \mu H_3, \ D_{f_{63}} = \mu H_5, \ D_{f_{64}} = \mu H_5 \\ D_{f_{61}} &= \mu H_3, \ D_{f_{62}} = \mu H_3, \ D_{f_{63}} = \mu H_5, \ D_{f_{64}} = \mu H_5 \\ D_{f_{61}} &= \mu H_3, \ D_{f_{62}} = \mu H_3, \ D_{f_{64}} = \mu H_5, \ D_{f_{64}} = \mu H_5 \\ D_{f_{61}} &= \mu H_3, \ D_{f_{62}} = \mu H_3, \ D_{f_{63}} = \mu H_5, \ D_{f_{64}} = \mu H_5 \\ D_{f_{64}} &= \mu H_5, \ D_{f_{64}} = \mu H_5, \ D_{f_{64}} = \mu H_5 \\ D_{f_{64}} &= \mu H_5, \ D_{f_{64}} = \mu H_5, \ D_{f_{64}} = \mu H_5 \\ D_{f_{64}} &= \mu H_4 \\ D_{f_{65}} &= (2G + \mu)H_3, \ D_{f_{65}} = (2G + \mu)H_5, \ D_{f_{64}} = \mu H_5 \\ D_{f_{64}} &= \mu H_4 \\ D_{f_{65}} &= (2G + \mu)H_3, \ D_{f_{65}} = (2G + \mu)H_5, \ D_{f_{64}} = \mu H_5 \\ D_{f_{64}} &= \mu H_5 \\ D_{f_{65}} &= (2G + \mu)H_3, \ D_{f_{65}} = (2G + \mu)H_5, \ D_{f_{64}} = \mu H_5 \\ D_{f_{65}} &= (2G + \mu)H_3, \ D_{f_{65}} &= (2G + \mu)H_5, \ D_{f_{66}} &= \mu H_6 \\ D_{f_{66}} &= (2G + \mu)H_4 \\ D_{f_{66}} &= (2$$

$$\begin{split} D_{f_{68}} &= \mu \hat{H}_4, \ D_{f_{69}} &= \mu \hat{H}_6, \ D_{f_{610}} &= \mu \hat{H}_6, \ D_{f_{611}} &= (2G + \mu) \hat{H}_4 \\ D_{f_{71}} &= (2G + \mu) \hat{H}_2, \ D_{f_{72}} &= 0, \ D_{f_{73}} &= (2G + \mu) \hat{H}_4 \\ D_{f_{74}} &= 0, \ D_{f_{75}} &= \mu \hat{H}_2, \ D_{f_{76}} &= \mu \hat{H}_4, \ D_{f_{77}} &= (2G + \mu) \hat{H}_3 \\ D_{f_{78}} &= \mu \hat{H}_3, \ D_{f_{79}} &= (2G + \mu) \hat{H}_5, \ D_{f_{710}} &= \mu \hat{H}_5, \ D_{f_{711}} &= \mu \hat{H}_3 \\ D_{f_{81}} &= 0, \ D_{f_{82}} &= (2G + \mu) \hat{H}_2, \ D_{f_{83}} &= 0, \ D_{f_{84}} &= (2G + \mu) \hat{H}_4 \\ D_{f_{85}} &= 0, \ D_{f_{86}} &= 0, \ D_{f_{87}} &= \mu \hat{H}_3, \ D_{f_{81}} (2G + \mu) \hat{H}_3 \\ D_{f_{98}} &= \mu \hat{H}_5, \ D_{f_{810}} &= (2G + \mu) \hat{H}_5, \ D_{f_{811}} &= \mu \hat{H}_3 \\ D_{f_{91}} &= (2G + \mu) \hat{H}_4, \ D_{f_{92}} &= 0, \ D_{f_{93}} &= (2G + \mu) \hat{H}_6 \\ D_{f_{94}} &= 0, \ D_{f_{95}} &= \mu \hat{H}_4, \ D_{f_{92}} &= 0, \ D_{f_{93}} &= (2G + \mu) \hat{H}_5 \\ D_{f_{98}} &= \mu \hat{H}_5, \ D_{f_{99}} &= (2G + \mu) \hat{H}_7, \ D_{f_{910}} &= \mu \hat{H}_5 \\ D_{f_{98}} &= \mu \hat{H}_5, \ D_{f_{99}} &= (2G + \mu) \hat{H}_4, \ D_{f_{103}} &= 0 \\ D_{f_{104}} &= (2G + \mu) \hat{H}_6, \ D_{f_{105}} &= 0, \ D_{f_{106}} &= 0, \ D_{f_{107}} &= \mu \hat{H}_5 \\ D_{f_{1011}} &= \mu \hat{H}_5, \ D_{f_{111}} &= \mu \hat{H}_2, \ D_{f_{112}} &= \mu \hat{H}_2, \ D_{f_{113}} &= \mu \hat{H}_4 \\ D_{f_{1011}} &= \mu \hat{H}_5, \ D_{f_{111}} &= \mu \hat{H}_2, \ D_{f_{112}} &= \mu \hat{H}_2, \ D_{f_{113}} &= \mu \hat{H}_4 \\ D_{f_{117}} &= \mu \hat{H}_3, \ D_{f_{118}} &= \mu \hat{H}_3, \ D_{f_{119}} &= \mu \hat{H}_5, \ D_{f_{1110}} &= \mu \hat{H}_5 \\ D_{f_{1111}} &= (2G + \mu) \hat{H}_3 \\ D_{f_{1111}} &= (2G + \mu) \hat{H}_3 \\ D_{f_{1111}} &= (2G + \mu) \hat{H}_3 \\ D_{f_{111}} &= (2G$$

*I*₃ $D_{s_{22}} = GH_5, D_{s_{23}} = GH_4, D_{s_{24}} = GH_6, D_{s_{31}} = GH_2, D_{s_{32}} = GH_4$ $D_{s_{33}} = GH_3, D_{s_{34}} = GH_5, D_{s_{41}} = GH_4, D_{s_{42}} = GH_6D_{s_{43}} = GH_5$ $D_{s_{44}} = GH_7$

بیوست ب

$$I_{n} = D_{s} \circ D_{f} \circ (j = 1, 2, ..., 7)$$
 در ماتریس های $D_{f} \circ D_{f} \circ D_{g} \circ D_{f}$
 $I_{r} = J_{-\frac{h}{2}} \circ D_{f} \circ D_{f} \circ D_{r} \circ D_{r}$

مهندسی مکانیک مدرس، آذر 1396، دورہ 17 شمارہ 9

$V^{2}\bar{I}_{2} - (2G + \mu)\hat{H}_{3}(V^{2}\bar{I}_{3} - (2G + \mu)C_{4}\hat{H}_{4})$
$L_{5_{46}} = \frac{1}{V^2 \bar{I}_0 - (2G + \mu) \bar{H}_1}$
$+(2G+\mu)C_4\hat{H}_6$
$L_{5_{51}} = GH_3, L_{5_{53}} = GC_0H_4, L_{5_{55}} = GC_1H_5, L_{5_{57}} = GC_2H_6$
$L_{5_{62}} = \frac{(V^2 \bar{I}_1 - (2G + \mu)H_2)(V^2 \bar{I}_3 - (2G + \mu)H_4)}{\Lambda}$
$V^2 \bar{I}_0 - (2G + \mu)H_1$
$+(2G + \mu)H_5$
$L_{5_{64}} = \frac{(V^2 I_2 - (2G + \mu)C_3 H_3)(V^2 I_3 - (2G + \mu)H_4)}{V^2 I_3 - (2G + \mu)H_4}$
$v = I_0 - (2G + \mu)H_1$ +(2G + $\mu)C_0H_1$
$V^{4}\bar{I}_{2}^{2} - V^{2}(2G + \mu)(1 + C_{4})\bar{I}_{2}H_{4} + (2G + \mu)^{2}C_{4}H_{4}^{2}$
$L_{5_{66}} = \frac{V_{5_{66}}^2}{V_{6}^2} + \frac{V_{6}^2}{V_{6}^2} + $
$+(2G + \mu)C_4H_7, L_{5\pi} = GH_4, L_{5\pi} = GC_0H_5, L_{5\pi} = GC_1H_6$
$L_{5_{77}} = GC_2H_7, L_{6_{2i-1},2i-1} = 0, (i, 1,, 4), (j, 1,, 4)$
$L_{6_{2i,2j}} = 0, (i, 1,, 3), (j, 1,, 3)$
$L_{c} = \hat{GH_{1}} + \frac{\mu H_{1}(V^{2}\bar{I_{1}} - (2G + \mu)\bar{H_{2}})}{2GC_{2}\bar{H_{2}}}, L_{c} = 2GC_{2}\bar{H_{2}} + \frac{1}{2}$
$RV^{2}\bar{I}_{0} - R(2G + \mu)H_{1}$
$\frac{\mu(V^2H_1\bar{I}_2 + C_3(H_3(-V^2\bar{I}_0 + (2G + \mu)H_1) - (2G + \mu)H_1H_3))}{\Lambda}$
$RV^2 \bar{I}_0 - R(2G + \mu)H_1$
$L_{6_{16}} = +3GC_4H_3 + \frac{\mu H_1(V^2\bar{I}_3 - (2G + \mu)C_4H_4)}{\Lambda}$
$RV^2 \bar{I}_0 - R(2G + \mu)H_1$
$L_{6_{21}} = -G\dot{H}_1 + \frac{\mu H_1(-V^2 I_1 + (2G + \mu)H_2)}{2}$
$RV^2I_0 - R(2G + \mu)H_1$
$L_{6_{23}} = + \frac{\mu C_o H_1 (V^2 I_1 - (2G + \mu) H_2)}{\Gamma_0 I_2} - G C_o H_2 + \mu C_o H_2$
$-V^{2}I_{0} + (2G + \mu)H_{1}$
$+\frac{\mu c_0 H_3}{R}, L_{6_{25}} = +\frac{\mu c_1 (H_3 + 2RH_2)(-V^2 I_1 + (2G + \mu)H_2)}{R}$
$RV^{2}I_{0} - R(2G + \mu)H_{1}$
$-GC_{1}H_{3} + 2\mu C_{1}H_{3}, L_{6_{27}} = -\frac{5\mu C_{2}(-\nu I_{1} + (2G + \mu)H_{2})H_{3}}{V^{2}I_{1} + (2G + \mu)H_{3}}$
$-v - I_0 + (2G + \mu) I_1$
$-6C_{2}n_{4} + 5\mu C_{2}n_{4} + \frac{1}{R}, L_{6_{32}} = -\frac{1}{R} + 6n_{2} - \mu n_{2}$
$+\frac{R\mu H_1(V^2 I_1 - (2G + \mu)H_2)}{\Gamma_{12}}, L_{6_{34}} = 2GC_3H_3 - \mu C_3H_3$
$RV^2I_0 - R(2G + \mu)H_1$
$+\frac{R\mu H_1(V^2 I_2 - (2G + \mu)C_3 H_3)}{R}, L_{6_{36}} = -\frac{\mu C_4 H_5}{R} + 3GC_4 H_4$
$RV^2I_0 - R(2G + \mu)H_1$
$-\mu C_4 H_4 + \frac{R\mu H_1 (V^2 I_3 - (2G + \mu)C_4 H_4)}{R\mu^2 \bar{L}_{44}}, L_{6_{41}}$
$RV^{2}I_{0} - R(2G + \mu)H_{1}$ - $\frac{\mu H_{3}}{2G} - 2GH$
$-\frac{R}{R}$ - 20112
$+\frac{\mu H_1(-V^2 I_2 + (2G + \mu)H_3)}{}, L_{6_{43}} = -2GC_oH_3 + \mu C_oH_3$
$RV^2I_0 - R(2G + \mu)H_1$

[DOR: 20.1001.1.10275940.1396.17.9.50.6]

$L_{7_{37}} = -\frac{(2G+\mu)C_2\bar{H}_5}{P^2} - 3(2G+\mu)C_2\bar{H}_3 - \frac{\mu C_2\bar{H}_4}{P}$
$3R\mu^2 C_2 H_1 H_3$
$-\frac{1}{RV^2\bar{I}_0 - R(2G + \mu)H_1}, L_{7_{42}} = -2GH_2, L_{7_{44}} = -4GC_3H_3$
$L_{7_{46}} = -6GC_4 \dot{H}_4, L_{7_{51}} = -\frac{(2G+\mu)\bar{H}_3}{R^2} - \frac{2\mu\bar{H}_2}{R}$
$\mu^2 H_1 H_3$ $2\mu^2 H_1 H_2$
$-\frac{1}{R(RV^{2}\bar{I}_{0}-R(2G+\mu)H_{1})} - \frac{1}{RV^{2}\bar{I}_{0}-R(2G+\mu)H_{1}}$
$\mu_{-} = -\mu C_o H_3 = (2G + \mu) C_o \bar{H}_4 = \mu^2 C_o H_3 \bar{H}_1$
$L_{7_{53}} = -\frac{1}{R} = \frac{1}{R^2} = \frac{1}{R^2} = \frac{1}{R^2 I_0 - R(2G + \mu)H_1}$
$-2(2G + \mu)C_{o}H_{2} - \frac{2R\mu^{2}C_{o}H_{1}H_{2}}{2R\mu^{2}C_{o}H_{1}H_{2}} - \frac{2\mu C_{o}H_{3}}{R}$
$RV^{2}I_{0} - R(2G + \mu)H_{1}$
$L_{7_{55}} = -\frac{(26+\mu)c_1H_5}{R^2} - \frac{\mu^2 c_1H_5}{R(2\mu)^2} - \frac{\mu^2 c_1H_5}{R^2}$
$R(RV^{2}I_{0} - R(2G + \mu)H_{1})$
$-\frac{4\mu^{2}c_{1}H_{3}H_{2}}{n} - \frac{4R\mu^{2}c_{1}H_{2}}{n} - \frac{2\mu c_{1}H_{4}}{R}$
$RV^{2}I_{0} - R(2G + \mu)H_{1}$ $RV^{2}I_{0} - R(2G + \mu)H_{1}$
$-4(2G+\mu)C_1H_3, L_{7_{57}} = -\frac{3\mu S_2 H_5}{R} - \frac{(2G+\mu)S_2 H_6}{R^2}$
$-\underbrace{3\mu^2 C_2 H_3 H_3}_{3\mu^2} - \underbrace{6R\mu^2 C_2 H_2 H_3}_{6R\mu^2} - \underbrace{2\mu C_2 H_5}_{2\mu^2}$
$RV^{2}\bar{I}_{0} - R(2G + \mu)H_{1}$ $RV^{2}\bar{I}_{0} - R(2G + \mu)H_{1}$ R
$-6(2G + \mu)C_2H_4, L_{7_{42}} = -3GH_3, L_{7_{44}} = -6GC_3H_4$
$L_7 = -96C_4H_7L_7 = -\frac{3\mu^2H_1H_3}{-3\mu H_3} - \frac{3\mu H_3}{-3\mu H_3}$
$RV^{2}\bar{I}_{0} - R(2G + \mu)H_{1}$
$-\frac{(2G+\mu)\bar{H}_4}{L_7} = -\frac{3R\mu^2 C_o H_1 H_3}{3R\mu^2 C_o H_1 H_3} - \frac{3\mu C_o H_4}{3R\mu^2 C_o H_1 H_3}$
R^2 $RV^2 \bar{I}_0 - R(2G + \mu) \bar{H}_1$ R
$-\frac{(2G+\mu)C_0H_5}{R^2} - 3(2G+\mu)C_0H_3, L_{7_{7_5}} = -\frac{(2G+\mu)C_1H_6}{R^2}$
$2\mu C_1 H_5 = 3\mu^2 C_1 (H_3 + 2RH_2) \hat{H}_3$
$-\frac{1}{R} - \frac{1}{RV^2 \bar{I}_0 - R(2G + \mu)H_1} - 6(2G + \mu)C_1H_4$
$3\mu C_1 H_5$, $(2G + \mu) C_2 H_7$, $9R\mu^2 C_2 H_3^2$
$-\frac{1}{R}, L_{7_{77}} = -\frac{1}{R^2} - \frac{1}{R^2 I_0 - R(2G + \mu)H_1}$
$-9(2C + u)C\hat{H} = -\frac{3\mu C_2 H_6}{4}$
$L_{8,,3} = 0, (i, 1,, 4), (i, 1,, 3)$
$L_{8_{2i,2j-1}} = 0, (i, 1,, 3), (j, 1,, 4)$
$L_{8_{11}} = -\bar{I}_0, L_{8_{13}} = -\bar{I}_1, L_{8_{15}} = -\bar{I}_2, L_{8_{17}} = -\bar{I}_3, L_{8_{22}} = -\bar{I}_2$
$L_{8_{24}} = -I_3, L_{8_{26}} = -I_4, L_{8_{31}} = -I_1, L_{8_{33}} = -I_2, L_{8_{35}} = -I_3$ $L_{8_{24}} = -I_1, L_{8_{24}} = -I_1, L_{8_{24}} = -I_1, L_{8_{24}} = -I_2, L_{8_{25}} = -I_3$
$ L_{8_{27}} = -I_4, L_{8_{42}} = -I_3, L_{8_{44}} = -I_4, L_{8_{46}} = -I_5, L_{8_{51}} = -I_2 $ $ L_{8_{52}} = -\overline{I}_3, L_{8_{55}} = -\overline{I}_4, L_{8_{57}} = -\overline{I}_5, L_{8_{27}} = -\overline{I}_5, L_{8_{27}$
$L_{8_{66}} = -\bar{I}_6, L_{8_{71}} = -\bar{I}_3, L_{8_{73}} = -\bar{I}_4, L_{8_{75}} = -\bar{I}_5, L_{8_{77}} = -\bar{I}_6$

$+\frac{\mu C_{o} \dot{H_{1}}(V^{2} \bar{I}_{2} - (2G + \mu)\dot{H_{3}})}{-V^{2} \bar{I}_{0} + (2G + \mu)\dot{H_{1}}}, L_{6_{45}} = \frac{\mu C_{1} H_{5}}{R} - 2GC_{1}\dot{H}_{4}$ $+2\mu C_1 \hat{H}_4 + \frac{\mu C_1 (H_3 + 2R\hat{H}_2)(-V^2 \bar{I}_2}{\mu} + (2G + \mu)\hat{H}_3)$ $L_{6_{47}} = -\frac{3\mu C_2 H_3 (-V^2 \bar{I}_2 + (2G + \mu) H_1)}{-V^2 \bar{I}_0 + (2G + \mu) H_1} - 2GC_2 H_5$ $+3\mu \hat{L_{2}H_{5}}, L_{6_{52}} = -\frac{\mu(H_{3}+2R\hat{H}_{2})(-V^{2}\bar{I}_{1}+(2G+\mu)\hat{H}_{2})}{\hat{H}_{2}}$ $+(G-2\mu)\hat{H}_{3}, L_{6_{54}} = -\frac{\mu C_{3}H_{5}}{R} + 2(G-\mu)C_{3}H_{4}$ $+ \frac{\mu(H_3 + 2RH_2)(V^2\bar{I}_2 - (2G + \mu)C_3H_3)}{(2G + \mu)C_3H_3}$ $RV^2 \bar{I}_0 - R(2G + \mu) \hat{H}_1$ $L_{6_{56}} = + \frac{\mu(H_3 + 2RH_2)(V^2\bar{I}_3 - (2G + \mu)C_4H_4)}{RV^2\bar{I}_0 - R(2G + \mu)H_1}$ + $(3G - 2\mu)C_4\hat{H}_5, L_{6_{61}} = +\frac{\mu H_1(-V^2\bar{I}_3 + (2G + \mu)\hat{H}_4)}{RV^2\bar{I}_0 - R(2G + \mu)\hat{H}_1}$ $-3G\hat{H}_{3}, L_{6_{63}} = + \frac{\mu C_{o} \hat{H}_{1} (V^{2} \bar{I}_{3} - (2G + \mu) \hat{H}_{4})}{-V^{2} \bar{I}_{0} + (2G + \mu) \hat{H}_{1}} + \frac{\mu C_{o} H_{5}}{R}$ $+(-3G + \mu)C_{o}H_{4}, L_{6_{65}} = +(-3G + 2\mu)C_{1}H_{5}$ $+\frac{\mu C_1 (H_3 + 2R\dot{H_2})(-V^2 \bar{I}_3 + (2G + \mu)H_4)}{RV^2 \bar{I}_0 - R(2G + \mu)\dot{H}_1}, L_{6_{67}} = \frac{\mu C_2 H_7}{R}$ $-3GC_{2}\dot{H}_{6} + 3\mu C_{2}\dot{H}_{6} - \frac{3\mu C_{2}\dot{H}_{3}(-V^{2}\bar{I}_{3} + (2G + \mu)\dot{H}_{4})}{-V^{2}\bar{I}_{0} + (2G + \mu)\dot{H}_{1}}$ $L_{7_{2i-1,2j}} = 0, (i, 1, \dots, 4), (j, 1, \dots, 3)$ $L_{7_{2i,2j-1}} = 0, (i, 1, ..., 3), (j, 1, ..., 4)$ $L_{7_{11}} = -\frac{\mu^2 H_1^2}{R^2 (V^2 \bar{I}_0 - (2G + \mu) H_1)} - \frac{(2G + \mu) \bar{H}_1}{R^2}$ $L_{7_{13}} = -\frac{\mu C_o H_1 (V^2 \bar{I}_0 - 2G \bar{H}_1)}{R (V^2 \bar{I}_0 - (2G + \mu) \bar{H}_1)} - \frac{(2G + \mu) C_o \bar{H}_2}{R^2}$ $L_{7_{15}} = \frac{(2G+\mu)C_1\bar{H}_3}{R^2} - \frac{\mu^2 C_1 H_1 (H_3 + 2R\bar{H}_2)}{\hat{R}^2 (V^2 \bar{I}_0 - (2G+\mu)\bar{H}_1)}$ $L_{7_{17}} = -\frac{C_2(3R\mu H_3 + (2G + \mu)\bar{H}_4)}{R^2} - \frac{1}{R^{2}}$ $3\mu^2 C_2 H_1 H_2$ $\overline{R(V^2\bar{I}_0 - (2G + \mu)H_1)}$ $L_{7_{22}} = -GH_1, L_{7_{24}} = -2GC_3H_2, L_{7_{24}} = -3GC_4H_3$ $L_{7_{31}} = -\frac{(2G+\mu)\bar{H}_2}{R^2} - \frac{\mu\bar{H}_1}{R} - \frac{\mu^2 H_1 H_1}{RV^2 \bar{I}_0 - R(2G+\mu)\bar{H}_1}$ $L_{7_{33}} = -\frac{(2G+\mu)C_o\bar{H}_3}{R^2} + (-2G-\mu)C_o\dot{H}_1 - \frac{\mu C_oH_2}{R}$ $-\frac{R\mu^2 C_0 H_1^2}{RV^2 \bar{I}_0 - R(2G+\mu)H_1}, L_{7_{35}} = -\frac{2\mu C_1 H_3}{R} - \frac{(2G+\mu)C_1 \bar{H}_4}{R^2}$ $-2(2G+\mu)C_{1}\hat{H}_{2} - \frac{\mu^{2}C_{1}\hat{H}_{1}(H_{3}+2RH_{2})}{RV^{2}\bar{I}_{2} - R(2G+\mu)\hat{H}_{2}} - \frac{\mu C_{1}\hat{H}_{3}}{R}$

12- مراجع

- A. Ugural, Stresses in Plates and Shells, pp. 198-200, Boston, McGraw-Hill, 1999.
- [2] V. Z. Vlasov, General Theory of Shells and its Applications in Engineering, pp. 495-514, Moscow-Leningrad, National Aeronautics and Space Administration, 1964.
- [3] A. Goldenveizer, Theory of elastic thin shells, *Naval Engineers Journal*, Vol. 74, No. 3, pp. 582-582, 1962.

437

detonation, International Journal of Pressure Vessels and Piping, Vol. 83, No. 7, pp. 531-539, 2006.

- [14] M. Mirzaei, Vibrational response of thin tubes to sequential moving pressures, *International Journal of Mechanical Sciences*, Vol. 59, No. 1, pp. 44-54, 2012.
- [15] M. Mirzaei, M. T. Asadi, R. Akbari, On vibrational behavior of pulse detonation engine tubes, *Aerospace Science and Technology*, Vol. 47, pp. 177-190, 2015.
- [16] C. Urn, A higher-order theory for vibration of doubly curved shallow shells, *Journal of Applied Mechanics*, Vol. 63, pp. 587, 1996.
- [17] A. K. Garg, R. K. Khare, T. Kant, Higher-order closed-form solutions for free vibration of laminated composite and sandwich shells, *Journal of Sandwich Structures and Materials*, Vol. 8, No. 3, pp. 205-235, 2006.
 [18] J. Reddy, C. Liu, A higher-order shear deformation theory of laminated
- [18] J. Reddy, C. Liu, A higher-order shear deformation theory of laminated elastic shells, *International Journal of Engineering Science*, Vol. 23, No. 3, pp. 319-330, 1985.
- [19] C. W. Bert, Structural theory for laminated anisotropic elastic shells, *Journal of Composite Materials*, Vol. 1, No. 4, pp. 414-423, 1967.
- [20] A. Leissa, J. D. Chang, Elastic deformation of thick, laminated composite shells, *Composite Structures*, Vol. 35, No. 2, pp. 153-170, 1996.
- [21] C. Loy, K. Lam, Vibration of thick cylindrical shells on the basis of threedimensional theory of elasticity, *Journal of Sound and Vibration*, Vol. 226, No. 4, pp. 719-737, 1999.
- [22] S. Khalili, A. Davar, K. M. Fard, Free vibration analysis of homogeneous isotropic circular cylindrical shells based on a new three-dimensional refined higher-order theory, *International Journal of Mechanical Sciences*, Vol. 56, No. 1, pp. 1-25, 2012.

- [4] J. Pearson, A fragmentation model for cylindrical warheads, DTIC Document, pp. 1990.
- [5] S. Gardner, Analysis of fragmentation and resulting shrapnel penetration of naturally fragmenting cylindrical bombs, *Lawrence Livermore National Laboratory*, U.S. Department Energy, 2000.
- [6] I. Mirsky, G. Hermann, Axially motions of thick cylindrical shells, Journal of Applied Mechanics-Transactions of the American Society of Mechanical Engineers, Vol. 25, pp. 97-102, 1958.
- [7] S. C. Tang, Dynamic response of a tube under moving pressure, *Journal of the Engineering Mechanics Division*, Vol. 91, No. 5, pp. 97-122, 1965.
 [8] H. Reismann, Response of a pre-stressed cylindrical shell to moving pressure
- [8] H. Reismann, Response of a pre-stressed cylindrical shell to moving pressure load, *Proceeding of Eighth Midwest Mechanics Conference*, *Pergamon*, New York, pp. 349-363, 1965.
- [9] T. Simkins, Amplification of flexural waves in gun tubes, *Journal of Sound* and Vibration, Vol. 172, No. 2, pp. 145-154, 1994.
- [10] A. Bezverkhii, V. Mukoid, Reaction of thick-walled cylindrical shell to a suddenly applied internal load, *International Applied Mechanics*, Vol. 30, No. 6, pp. 441-445, 1994.
- [11] W. Beltman, J. Shepherd, Linear elastic response of tubes to internal detonation loading, *Journal of Sound and Vibration*, Vol. 252, No. 4, pp. 617-655, 2002.
- [12] M. Mirzaei, K. Mazaheri, H. Biglari, Analytical modeling of the elastic structural response of tubes to internal detonation loading, *International Journal of Pressure Vessels and Piping*, Vol. 82, No. 12, pp. 883-895, 2005.
- [13] M. Mirzaei, H. Biglari, M. Salavatian, Analytical and numerical modeling of the transient elasto-dynamic response of a cylindrical tube to internal gaseous