Volume 19, Issue 1 (2019)                   Modares Mechanical Engineering 2019, 19(1): 75-83 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Abolhasani S, Fallah F, Akbari J. Manufacturing and Investigating Mechanical Properties of Polymeric Composites Reinforced with Natural Fibers. Modares Mechanical Engineering. 2019; 19 (1) :75-83
URL: http://journals.modares.ac.ir/article-15-16765-en.html
1- Applied Mechanics Division, Mechanical Engineering School, Sharif University of Technology, Tehran, Iran
2- Applied Mechanics Division, Mechanical Engineering School, Sharif University of Technology, Tehran, Iran , fallah@sharif.edu
Abstract:   (161 Views)
By increasing the level of public awareness, more recyclable and natural materials are used. The aim of this research was to fabricate natural fiber reinforced composites and to investigate the effects of fiber length (5mm and 9mm), fiber mass percent (5%, 10%, 12.5%, and 15%), and fiber surface treatment on tensile, flexural, and water absorption properties of the fabricated composite. The experiments were designed, by the Taguchi method. In this research, epoxy resin and kenaf fiber have been used. Tensile, flexural and water absorption tests were performed on the samples. The highest values were 37.67 MPa for tensile strength, 4.94 GPa for tensile modulus, 31.78 MPa for flexural strength, and 6.05 GPa for flexural modulus. The lowest percentage of water absorption was 0.3%. Alkali treatment improved tensile, flexural, and water absorption properties. The optimum of fiber mass percent was 12.5% to maximize tensile strength, tensile modulus, and flexural strength, 10%to maximize flexural modulus, and 5% to minimize water absorption. Except for the tensile modulus, the effect of fiber length on the mechanical properties of the composite is observed to be less pronounced than the other two factors. To maximize the tensile modulus, the fiber length is better to be 9 mm. In this study, the values obtained for the tensile strength and tensile modulus of the fabricated composite are more than the ones in the previous works. Finally, the strength and tensile modulus obtained experimentally were compared with the ones obtained via two micro-mechanical models, modified rule of mixture, and modified Halpin-Tsia model. 
Full-Text [PDF 785 kb]   (62 Downloads)    

Received: 2018/03/4 | Accepted: 2018/09/14 | Published: 2019/01/1
* Corresponding Author Address: Applied Mechanics Division, Sharif University of Technology, Azadi Avenue, Tehran, Iran. Postal Code: 1458889694

References
1. Faruk O, Bledzki AK, Fink HP, Sain M. Progress report on natural fiber reinforced composites. Macromolecular Materials and Engineering. 2014;299(1):9-26. [Link] [DOI:10.1002/mame.201300008]
2. Omrani E, Menezes PL, Rohatgi PK. State of the art on tribological behavior of polymer matrix composites reinforced with natural fibers in the green materials world. Engineering Science and Technology, an International Journal. 2016;19(2):717-736. [Link] [DOI:10.1016/j.jestch.2015.10.007]
3. Thakur VK, Thakur MK. Processing and characterization of natural cellulose fibers/thermoset polymer composites. Carbohydrate Polymers. 2014;109:102-117. [Link] [DOI:10.1016/j.carbpol.2014.03.039]
4. Ku H, Wang H, Pattarachaiyakoop N, Trada M. A review on the tensile properties of natural fiber reinforced polymer composites. Composites Part B: Engineering. 2011;42(4):856-873. [Link] [DOI:10.1016/j.compositesb.2011.01.010]
5. Zahari WZW, Badri RNRL, Ardyananta H, Kurniawan D, Nor FM. Mechanical properties and water absorption behavior of polypropylene/ijuk fiber composite by using silane treatment. Procedia Manufacturing. 2015;2:573-578. [Link] [DOI:10.1016/j.promfg.2015.07.099]
6. Balakrishna A, Nageswara Rao D, Rakesh AS. Characterization and modeling of process parameters on tensile strength of short and randomly oriented Borassus Flabellifer (Asian Palmyra) fiber reinforced composite. Composites Part B: Engineering. 2013;55:479-485. [Link] [DOI:10.1016/j.compositesb.2013.07.006]
7. Maurya HO, Gupta M, Srivastava R, Singh H. Study on the mechanical properties of epoxy composite using short sisal fibre. Materials Today Proceedings. 2015;2(4-5):1347-1355. [Link] [DOI:10.1016/j.matpr.2015.07.053]
8. Gopinath A, Kumar MS, Elayaperumal A. Experimental investigations on mechanical properties of jute fiber reinforced composites with polyester and epoxy resin matrices. Procedia Engineering. 2014;97:2052-2063. [Link] [DOI:10.1016/j.proeng.2014.12.448]
9. Kumar R, Kumar K, Sahoo P, Bhowmik S. Study of mechanical properties of wood dust reinforced epoxy composite. Procedia Materials Science. 2014;6:551-556. [Link] [DOI:10.1016/j.mspro.2014.07.070]
10. Romli FI, Alias AN, Rafie ASM, Abdul Majid DLA. Factorial study on the tensile strength of a coir fiber-reinforced epoxy composite. AASRI Procedia. 2012;3:242-247. [Link] [DOI:10.1016/j.aasri.2012.11.040]
11. Beckermann G, Pickering KL. Engineering and evaluation of hemp fibre reinforced polypropylene composites: Micro-mechanics and strength prediction modelling. Composites Part A: Applied Science and Manufacturing. 2009;40(2):210-217. [Link] [DOI:10.1016/j.compositesa.2008.11.005]
12. Vilaseca F, Valadez-Gonzalez A, Herrera-Franco PJ, Pèlach MÀ, López JP, Mutjé P. Biocomposites from abaca strands and polypropylene, Part I: Evaluation tensile properties. Bioresource Technology. 2010;101(1):387-395. [Link] [DOI:10.1016/j.biortech.2009.07.066]
13. Facca AG, Kortschot MT, Yan N. Predicting the elastic modulus of natural fibre reinforced thermoplastics. Composites Part A: Applied Science and Manufacturing. 2006;37(10):1660-1671. [Link] [DOI:10.1016/j.compositesa.2005.10.006]
14. Facca AG, Kortschot MT, Yan N. Predicting the tensile strength of natural fibre reinforced thermoplastics. Composites Science and Technology. 2007;67(11-12):2454-2466. [Link] [DOI:10.1016/j.compscitech.2006.12.018]
15. Al-Bahadly EAO. The mechanical properties of natural fiber composites [Dissertation]. Melbourne: Swinburne University of Technology; 2013. [Link]
16. Espinach FX, Delgado-Aguilar M, Puig J, Julian F, Boufi S, Mutjé p. Flexural properties of fully biodegradable alpha-grass fibers reinforced starch-based thermoplastics. Composites Part B: Engineering. 2015;81:98-106. [Link] [DOI:10.1016/j.compositesb.2015.07.004]
17. Xu X. Cellulose fiber reinforced nylon 6 or nylon 66 composites [Dissertation]. Georgia: Georgia Institute of Technology; 2008. [Link]
18. Lu Y. Mechanical properties of random discontinuous fiber composites manufactured from wetlay process [Dissertation]. Blacksburg: Virginia Polytechnic Institute and State University; 2002. [Link]
19. Das G, Biswas S. Effect of fiber parameters on physical, mechanical and water absorption behaviour of coir fiber–epoxy composites. Journal of Reinforced Plastics and Composites. 2016;35(8):644-653. [Link] [DOI:10.1177/0731684415626594]
20. Vijayakumar S, Nilavarasan T, Usharani R, Karunamoorthy L. mechanical and microstructure characterization of Coconut spathe fibers and Kenaf bast fibers reinforced epoxy polymer matrix composites. Procedia Materials Science. 2014;5:2330-2337. [Link] [DOI:10.1016/j.mspro.2014.07.476]

Add your comments about this article : Your username or Email:
CAPTCHA code

Send email to the article author