Volume 19, Issue 4 (2019)                   Modares Mechanical Engineering 2019, 19(4): 1001-1007 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Ashrafnia S, Jamshidian M. Calculating the Size-dependent Surface Energy of Metallic Spherical Nanoparticles and Nanocavities Using Molecular Dynamics. Modares Mechanical Engineering. 2019; 19 (4) :1001-1007
URL: http://journals.modares.ac.ir/article-15-17468-en.html
1- Department of Mechanical Engineering, Isfahan University of Technology, Isfahan, Iran
2- Department of Mechanical Engineering, Isfahan University of Technology, Isfahan, Iran , jamshidian@cc.iut.ac.ir
Abstract:   (551 Views)
The unique characteristics of nanostructures are mainly due to their large surface to volume ratio. One of the most important quantities in investigating the surface properties of materials is the surface energy. Therefore, calculating the surface energy is necessary for the proper understanding of the behavior and properties of nanostructured materials. The present study investigates the size-dependent surface energy of crystalline nanoparticles and nanocavities of aluminum, silver, copper, and iron. For this purpose, spherical nanoparticles and nanocavities with different radiuses are modeled by molecular dynamics simulations and their surface energy is obtained. The simulation results demonstrate that for nanoparticles and nanocavities with sufficiently small radiuses in the range of a few nanometers, the surface energy depends on the size of the nanostructure. For spherical nanoparticles, the surface energy increases with increasing nanoparticle radius, while for the spherical nanocavities, the surface energy decreases by increasing nanocavity radius. Also, the surface energy variation with size is more intense for nanocavities in comparison with nanoparticles. By increasing the radius, the surface energy of nanoparticles and nanocavities approaches to an asymptotical value, which is the surface energy of a crystalline flat surface or the Gibbs surface energy for the crystallographic surface orientation with the maximum surface energy.
Full-Text [PDF 536 kb]   (257 Downloads)    

Received: 2018/11/25 | Accepted: 2018/11/27 | Published: 2019/04/6

References
1. Malakpour S, Ansari R, Darvizeh M, Sadeghi M. Studying the mechanical properties of monolayer tungsten disulfide (WS2) nanosheets. Modares Mechanical Engineering. 2014;14(5):11-14. [Persian] [Link]
2. Shooshtari A, Dastani Mobarekeh D. Nonlinear free vibration of a single layered nanoplate based on the nonlocal elasticity. Modares Mechanical Engineering. 2014;13(15):223-236. [Persian] [Link]
3. Dehghani A, Jamshidian M, Talaei MS, Silani M. Calculation of size-dependent surface energy of metallic nanoplates using molecular dynamics simulations. Modares Mechanical Engineering. 2018;17(11):447-452. [Persian] [Link]
4. Yang CC, Mai YW. Thermodynamics at the nanoscale: A new approach to the investigation of unique physicochemical properties of nanomaterials. Materials Science and Engineering R Reports. 2014;79(1):1-40. https://doi.org/10.1016/j.msea.2014.05.064 [Link] [DOI:10.1016/j.mser.2014.02.001]
5. Qi W. Nanoscopic thermodynamics. Accounts of Chemical Research. 2016;49(9):1587-1595. [Link] [DOI:10.1021/acs.accounts.6b00205]
6. Vitos L, Ruban AV, Skriver HL, Kollar J. The surface energy of metals. Surface Science. 1998;411(1-2):186-202. [Link] [DOI:10.1016/S0039-6028(98)00363-X]
7. Zhao M, Zheng W, Li J, Wen Z, Gu M, Sun CQ. Atomistic origin, temperature dependence, and responsibilities of surface energetics: An extended broken-bond rule. Physical Review B. 2007;75(8):085427. [Link] [DOI:10.1103/PhysRevB.75.085427]
8. Medasani B, Park YH, Vasiliev I. Theoretical study of the surface energy, stress, and lattice contraction of silver nanoparticles. Physical Review B. 2007;75(23):235436. [Link] [DOI:10.1103/PhysRevB.75.235436]
9. Bian J, Wang G, Feng X. Atomistic calculations of surface energy of spherical copper surfaces. Acta Mechanica Solida Sinica. 2012;25(6):557-561. [Link] [DOI:10.1016/S0894-9166(12)60050-0]
10. Xiong Sh, Qi W, Cheng Y, Huang B, Wang M, Li Y. Modeling size effects on the surface free energy of metallic nanoparticles and nanocavities. Physical Chemistry Chemical Physics. 2011;13(22):10648-10651. [Link] [DOI:10.1039/c0cp02102d]
11. Luo W, Hu W, Su K, Liu F. The calculation of surface free energy based on embedded atom method for solid nickel. Applied Surface Science. 2013;265:375-378. [Link] [DOI:10.1016/j.apsusc.2012.11.015]
12. Okeke G, Hammond RB, Antony SJ. Molecular dynamics simulation of anatase TiO2 nanoparticles. Journal of Nanoscience and Nanotechnology. 2013;13(2):1047-1052. [Link] [DOI:10.1166/jnn.2013.6121]
13. Ali S, Myasnichenko VS, Neyts EC. Size-dependent strain and surface energies of gold nanoclusters. Physical Chemistry Chemical Physics. 2016;18(2):792-800. [Link] [DOI:10.1039/C5CP06153A]
14. Belashchenko DK. On the geometry and thermodynamics of nanoclusters. Russian Journal of Physical Chemistry A. 2015;89(3):516-530. [Link] [DOI:10.1134/S0036024415030073]
15. Holec D, Fischer FD, Vollath D. Structure and surface energy of Au55 nanoparticles: An ab initio study. Computational Materials Science. 2017;134:137-144. [Link] [DOI:10.1016/j.commatsci.2017.03.038]
16. Williams PL, Mishin Y, Hamilton JC. An embedded-atom potential for the Cu-Ag system. Modelling and Simulation in Materials Science and Engineering. 2006;14(5):817-833. [Link] [DOI:10.1088/0965-0393/14/5/002]
17. Winey JM, Kubota A, Gupta YM. A thermodynamic approach to determine accurate potentials for molecular dynamics simulations: Thermoelastic response of aluminum. Modelling and Simulation in Materials Science and Engineering. 2009;17(5):055004. [Link] [DOI:10.1088/0965-0393/17/5/055004]
18. Zhou XW, Johnson RA, Wadley HNG. Misfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers. Physical Review B. 2004;69(14):144113. [Link] [DOI:10.1103/PhysRevB.69.144113]
19. Mendelev MI, Han S, Srolovitz DJ, Ackland GJ, Sun DY, Asta M. Development of new interatomic potentials appropriate for crystalline and liquid iron. Philosophical Magazine. 2003;83(35):3977-3994. [Link] [DOI:10.1080/14786430310001613264]
20. Lee B, Richards FM. The interpretation of protein structures: Estimation of static accessibility. Journal of Molecular Biology. 1971;55(3):379-400. [Link] [DOI:10.1016/0022-2836(71)90324-X]
21. Richmond TJ. Solvent accessible surface area and excluded volume in proteins: Analytical equations for overlapping spheres and implications for the hydrophobic effect. Journal of Molecular Biology. 1984;178(1):63-89. [Link] [DOI:10.1016/0022-2836(84)90231-6]
22. Richards FM. Areas, volumes, packing, and protein structure. Annual Review of Biophysics and Bioengineering. 1977;6:151-176. [Link] [DOI:10.1146/annurev.bb.06.060177.001055]
23. Ning T, Yu Q, Ye Y. Multilayer relaxation at the surface of fcc metals: Cu, Ag, Au, Ni, Pd, Pt, Al. Surface Science. 1988;206(1-2):L857-L863. [Link] [DOI:10.1016/0039-6028(88)90008-8]
24. Wang X, Jia Y, Yao Q, Wang F, Ma J, Hu X. The calculation of the surface energy of high-index surfaces in metals at zero temperature. Surface Science. 2004;551(3):179-188. [Link] [DOI:10.1016/j.susc.2003.12.034]
25. Jacobsen KW, Norskov JK, Puska MJ. Interatomic interactions in the effective-medium theory. Physical Review B. 1987;35(14):7423. [Link] [DOI:10.1103/PhysRevB.35.7423]
26. Soon Lai W, Chiu CH. Surface energy density of metal nanostructures by Thomas-Fermi model. Applied Physics Letters. 2011;99(3):031905. [Link] [DOI:10.1063/1.3615280]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author