Volume 19, Issue 2 (2019)                   Modares Mechanical Engineering 2019, 19(2): 303-315 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Dastjerdi M, Fallah A, Rashidi S. Fast and Precise Estimation of Displacement and Strain Fields in Elastography Imaging Technique. Modares Mechanical Engineering. 2019; 19 (2) :303-315
URL: http://journals.modares.ac.ir/article-15-18342-en.html
1- Bioelectric Department, Biomedical Engineering Faculty, Amirkabir University of Technology (AUT), Tehran, Iran
2- Bioelectric Department, Biomedical Engineering Faculty, Amirkabir University of Technology (AUT), Tehran, Iran , afallah@aut.ac.ir
3- Medical Sciences & Technologies Faculty, Science & Research Branch, Islamic Azad University, Tehran, Iran
Abstract:   (948 Views)
Mechanical variables and properties of soft tissues, such as strain and Young’s modulus, are estimated by dint of novel methods known as Elastography, for instance, with the aim of improving medical diagnoses, especially the noninvasive detection and classification of tumors. In elastography approach, local mechanical properties of tissues are estimated from their responses to static or dynamic excitations, which are being recorded using conventional medical imaging machines. In the most elastography techniques, for example, strain (static) elastography, displacement fields are generally extracted from the recorded data such as ultrasound images and signals. The profits of cross correlation algorithm, for instance, high precision, accuracy, and resolution, have made it the most prevalent method for estimating strain field in the tissue from the recorded ultrasound signals and images. The benefits of cross correlation method outweigh its defect in the fast computation of displacement and strain field. In this paper, some strategies, specifically the guided search, have been manipulated to improve the speed of algorithm, without decreasing its accuracy. In order to evaluate the proposed stratagem, the ultrasound signals, which had been captured while a cancerous liver was compressing, have been utilized. The average differences between the axial displacement and strain fields estimated by applying the enhanced cross correlation method (calculated in less than 30s) and the analytic minimization technique have been computed 0.22sample and 0.21×10-2. Minor disparities between the two sets of displacement and strain field estimated utilizing the aforementioned techniques validate the accuracy of results of the enhanced cross correlation method.
 
Full-Text [PDF 1317 kb]   (329 Downloads)    

Received: 2018/04/1 | Accepted: 2018/05/18 | Published: 2019/02/2

References
1. Greenleaf JF, Fatemi M, Insana M. Selected methods for imaging elastic properties of biological tissues. Annual Review of Biomedical Engineering. 2003;5:57-78. [Link] [DOI:10.1146/annurev.bioeng.5.040202.121623]
2. Artmann GM, Chien S, editors. Bioengineering in cell and tissue research. Heidelberg: Springer Science & Business Media; 2008. [Link] [DOI:10.1007/978-3-540-75409-1]
3. Zahiri Azar R. Methods for the estimation of the tissue motion using digitized ultrasound echo signals [Dissertation]. Vancouver: The University of British Columbia; 2009. [Link]
4. Jiang J, Hall TJ. A coupled subsample displacement estimation method for ultrasound-based strain elastography. Physics in Medicine & Biology. 2015;60(21):8347-8364. [Link] [DOI:10.1088/0031-9155/60/21/8347]
5. Shiina T, Nightingale KR, Palmeri ML, Hall TJ, Bamber JC, Barr RG, et al. WFUMB guidelines and recommendations for clinical use of ultrasound elastography: Part 1: Basic principles and terminology. Ultrasound in Medicine and Biology. 2015;41(5):1126-1147. [Link] [DOI:10.1016/j.ultrasmedbio.2015.03.009]
6. Hashemi HS, Rivaz H. Global time-delay estimation in ultrasound elastography. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control. 2017;64(10):1625-1636. [Link] [DOI:10.1109/TUFFC.2017.2717933]
7. Lu M, Tang Y, Sun R, Wang T, Chen S, Mao R. A real time displacement estimation algorithm for ultrasound elastography. Computers in Industry. 2015;69:61-71. [Link] [DOI:10.1016/j.compind.2014.09.006]
8. Xu T. Two-dimensional blood flow velocity estimation using ultrasound speckle pattern dependence on scan direction and velocity [Dissertation]. Lincoln: The University of Nebraska-Lincoln; 2012. [Link]
9. Kirk Shung K. Diagnostic ultrasound: Imaging and blood flow measurements. 2nd Edition. Boca Raton: CRC Press; 2015. [Link] [DOI:10.1201/b18323]
10. Pouch AM, Cary TW, Schultz SM, Sehgal CM. In vivo noninvasive temperature measurement by B‐mode ultrasound imaging. Journal of Ultrasound in Medicine. 2010;29(11):1595-1606. [Link] [DOI:10.7863/jum.2010.29.11.1595]
11. Daniels MJ, Varghese T, Madsen EL, Zagzebski JA. Non-invasive ultrasound-based temperature imaging for monitoring radiofrequency heating-phantom results. Physics in Medicine & Biology. 2007;52(16):4827-4843. [Link] [DOI:10.1088/0031-9155/52/16/008]
12. Ding X, Dutta D, Mahmoud AM, Tillman B, Leers SA, Kim K. An adaptive displacement estimation algorithm for improved reconstruction of thermal strain. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control. 2015;62(1):138-151. [Link] [DOI:10.1109/TUFFC.2014.006516]
13. Seo CH, Shi Y, Huang SW, Kim K, O'Donnell M. Thermal strain imaging: A review. Interface Focus. 2011;1(4):649-664. [Link] [DOI:10.1098/rsfs.2011.0010]
14. Ivancevich NM, Dahl JJ, Trahey GE, Smith SW. Phase-aberration correction with a 3-D ultrasound scanner: Feasibility study. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control. 2006;53(8):1432-1439. [Link] [DOI:10.1109/TUFFC.2006.1665100]
15. Dahl JJ, Mc Aleavey SA, Pinton GF, Soo MS, Trahey GE. Adaptive imaging on a diagnostic ultrasound scanner at quasi real-time rates. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control. 2006;53(10):1832-1843. [Link] [DOI:10.1109/TUFFC.2006.115]
16. Liao YY, Li CH, Tsui PH, Chang CC, Kuo WH, Chang KJ, et al. Discrimination of breast microcalcifications using a strain-compounding technique with ultrasound speckle factor imaging. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control. 2014;61(6):955-965. [Link] [DOI:10.1109/TUFFC.2014.2991]
17. Hansen HH, Saris AE, Vaka NR, Nillesen MM, de Korte CL. Ultrafast vascular strain compounding using plane wave transmission. Journal of Biomechanics. 2014;47(4):815-823. [Link] [DOI:10.1016/j.jbiomech.2014.01.015]
18. Rivaz H, Rohling R. An active dynamic vibration absorber for a hand-held vibro-elastography probe. Journal of Vibration and Acoustics. 2007;129(1):101-112. [Link] [DOI:10.1115/1.2424982]
19. Ophir J, Céspedes I, Ponnekanti H, Yazdi Y, Li X. Elastography: A quantitative method for imaging the elasticity of biological tissues. Ultrasonic Imaging. 1991;13(2):111-134. https://doi.org/10.1177/016173469101300201 [Link] [DOI:10.1016/0161-7346(91)90079-W]
20. Ophir J, Alam SK, Garra B, Kallel F, Konofagou E, Krouskop T, et al. Elastography: Ultrasonic estimation and imaging of the elastic properties of tissues. Proceedings of the Institution of Mechanical Engineers Part H Journal of Engineering in Medicine. 1999;213(3):203-233. [Link] [DOI:10.1243/0954411991534933]
21. Hall TJ, Zhu Y, Spalding CS. In vivo real-time freehand palpation imaging. Ultrasound in Medicine and Biology. 2003;29(3):427-435. [Link] [DOI:10.1016/S0301-5629(02)00733-0]
22. Lerner RM, Huang SR, Parker KJ. "Sonoelasticity" images derived from ultrasound signals in mechanically vibrated tissues. Ultrasound in Medicine and Biology. 1990;16(3):231-239. [Link] [DOI:10.1016/0301-5629(90)90002-T]
23. Parker KJ, Huang SR, Musulin RA, Lerner RM. Tissue response to mechanical vibrations for "sonoelasticity imaging". Ultrasound in Medicine and Biology. 1990;16(3):241-246. [Link] [DOI:10.1016/0301-5629(90)90003-U]
24. Hoyt K, Parker KJ, Rubens DJ. Real-time shear velocity imaging using sonoelastographic techniques. Ultrasound in Medicine and Biology. 2007;33(7):1086-1097. [Link] [DOI:10.1016/j.ultrasmedbio.2007.01.009]
25. Turgay E, Salcudean S, Rohling R. Identifying the mechanical properties of tissue by ultrasound strain imaging. Ultrasound in Medicine and Biology. 2006;32(2):221-235. [Link] [DOI:10.1016/j.ultrasmedbio.2005.09.015]
26. Chen S, Urban MW, Pislaru C, Kinnick R, Zheng Y, Yao A, et al. Shearwave Dispersion Ultrasound Vibrometry (SDUV) for measuring tissue elasticity and viscosity. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control. 2009;56(1):55-62. [Link] [DOI:10.1109/TUFFC.2009.1005]
27. Bercoff J, Chaffai S, Tanter M, Sandrin L, Catheline S, Fink M, et al. In vivo breast tumor detection using transient elastography. Ultrasound in Medicine and Biology. 2003;29(10):1387-1396. [Link] [DOI:10.1016/S0301-5629(03)00978-5]
28. Catheline S, Gennisson JL, Delon G, Fink M. Viscoelastic properties of soft solids using transient elastography. Proceedings of Second International Conference on the Ultrasonic Measurement and Imaging of Tissue Elasticity, Corpus Christi, Texas, USA, October 12–15, 2003. Sutton: International Tissue Elasticity ConferenceTM; 2003. p. 25. [Link]
29. Bercoff J, Tanter M, Fink M. Supersonic shear imaging: A new technique for soft tissue elasticity mapping. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control. 2004;51(4):396-409. [Link] [DOI:10.1109/TUFFC.2004.1295425]
30. de Korte CL, van der Steen AF, Cépedes EI, Pasterkamp G, Carlier SG, Mastik F, et al. Characterization of plaque components and vulnerability with intravascular ultrasound elastography. Physics in Medicine & Biology. 2000;45(6):1465-1475. [Link] [DOI:10.1088/0031-9155/45/6/305]
31. Kaluzynski K, Chen X, Emelianov SY, Skovoroda AR, O'Donnell M. Strain rate imaging using two-dimensional speckle tracking. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control. 2001;48(4):1111-1123. [Link] [DOI:10.1109/58.935730]
32. Lee WN, Ingrassia CM, Fung-Kee-Fung SD, Costa KD, Holmes JW, Konofagou EE. Theoretical quality assessment of myocardial elastography with in vivo validation. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control. 2007;54(11):2233-2245. [Link] [DOI:10.1109/TUFFC.2007.528]
33. Walker WF, Fernandez FJ, Negron LA. A method of imaging viscoelastic parameters with acoustic radiation force. Physics in Medicine & Biology. 2000;45(6):1437-1447. [Link] [DOI:10.1088/0031-9155/45/6/303]
34. Fatemi M, Greenleaf JF. Probing the dynamics of tissue at low frequencies with the radiation force of ultrasound. Physics in Medicine & Biology. 2000;45(6):1449-1464. [Link] [DOI:10.1088/0031-9155/45/6/304]
35. Nightingale KR, Palmeri ML, Nightingale RW, Trahey GE. On the feasibility of remote palpation using acoustic radiation force. Journal of the Acoustical Society of America. 2001;110(1):625-634. [Link] [DOI:10.1121/1.1378344]
36. Eskandari H, Salcudean SE, Rohling R. Viscoelastic parameter estimation based on spectral analysis. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control. 2008;55(7):1611-1625. [Link] [DOI:10.1109/TUFFC.2008.839]
37. Eskandari H, Salcudean SE, Rohling R, Ohayon J. Viscoelastic characterization of soft tissue from dynamic finite element models. Physics in Medicine & Biology. 2008;53(22):6569-6590. [Link] [DOI:10.1088/0031-9155/53/22/018]
38. Papazoglou S, Hamhaber U, Braun J, Sack I. Algebraic Helmholtz inversion in planar magnetic resonance elastography. Physics in Medicine & Biology. 2008;53(12):3147-3158. [Link] [DOI:10.1088/0031-9155/53/12/005]
39. Muthupillai R, Lomas DJ, Rossman PJ, Greenleaf JF, Manduca A, Ehman RL. Magnetic resonance elastography by direct visualization of propagating acoustic strain waves. Science. 1995;269(5232):1854-1857. [Link] [DOI:10.1126/science.7569924]
40. Venkatesh SK, Yin M, Ehman RL. Magnetic resonance elastography of liver: Technique, analysis, and clinical applications. Journal of Magnetic Resonance Imaging. 2013;37(3):544-555. [Link] [DOI:10.1002/jmri.23731]
41. Jurvelin JS, Buschmann MD, Hunziker EB. Optical and mechanical determination of Poisson's ratio of adult bovine humeral articular cartilage. Journal of Biomechanics. 1997;30(3):235-241. [Link] [DOI:10.1016/S0021-9290(96)00133-9]
42. Mahdi Zadeh Dastjerdi M, Mahloojifar A. Optical elastography: From theory to clinical applications. Lasers in Medicine. 2008;5(3-4):6-20. [Persian] [Link]
43. 43- Céspedes I, Ophir J, Ponnekanti H, Maklad N. Elastography: Elasticity imaging using ultrasound with application to muscle and breast in vivo. Ultrasonic Imaging. 1993;15(2):73-88. https://doi.org/10.1006/uimg.1993.1007 [Link] [DOI:10.1177/016173469301500201]
44. Thitaikumar A, Mobbs LM, Kraemer-Chant CM, Garra BS, Ophir J. Breast tumor classification using axial shear strain elastography: A feasibility study. Physics in Medicine & Biology. 2008;53(17):4809-4823. [Link] [DOI:10.1088/0031-9155/53/17/022]
45. Papazoglou S, Xu C, Hamhaber U, Siebert E, Bohner G, Klingebiel R, et al. Scatter-based magnetic resonance elastography. Physics in Medicine & Biology. 2009;54(7):2229-2241. [Link] [DOI:10.1088/0031-9155/54/7/025]
46. Oliphant TE. Direct methods for dynamic elastography reconstruction: Optimal inversion of the interior Helmholtz problem [Dissertation]. Rochester: Mayo Graduate School; 2001. [Link]
47. Sarvazyan AP, Rudenko OV, Swanson SD, Fowlkes JB, Emelianov SY. Shear wave elasticity imaging: A new ultrasonic technology of medical diagnostics. Ultrasound in Medicine and Biology. 1998;24(9):1419-1435. [Link] [DOI:10.1016/S0301-5629(98)00110-0]
48. Righetti R, Ophir J, Srinivasan S, Krouskop TA. The feasibility of using elastography for imaging the Poisson's ratio in porous media. Ultrasound in Medicine and Biology. 2004;30(2):215-228. [Link] [DOI:10.1016/j.ultrasmedbio.2003.10.022]
49. Skovoroda AR, Emelianov SY, O'Donnell M. Tissue elasticity reconstruction based on ultrasonic displacement and strain images. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control. 1995;42(4):747-765. [Link] [DOI:10.1109/58.393117]
50. Barbone PE. A variational formulation leading to direct elastic modulus reconstruction. Proceedings of Second International Conference on the Ultrasonic Measurement and Imaging of Tissue Elasticity, Corpus Christi, Texas, USA, October 12–15, 2003. Sutton: International Tissue Elasticity ConferenceTM; 2003. p. 67. [Link]
51. Ophir J, Céspedes I, Garra BS, Ponnekanti H, Huang Y, Maklad N. Elastography: Ultrasonic imaging of tissue strain and elastic modulus in vivo. European Journal of Ultrasound. 1996;3(1): 49-70. [Link] [DOI:10.1016/0929-8266(95)00134-4]
52. Varghese T. Imaging elastographic properties of soft tissues using ultrasound. American Association of Physicists in Medicine (AAPM) 46th Annual Meeting, Pittsburgh, Pennsylvania, US, July 21-24, 2004. Virginia: American Association of Physicists in Medicine (AAPM); 2004. [Link]
53. Ramalli A. Development of novel ultrasound techniques for imaging and elastography: From simulation to real-time implementation. Firenze: Firenze University Press; 2013. [Link]
54. Konofagou EE, Varghese T, Ophir J, Alam SK. Power spectral strain estimators in elastography. Ultrasound in Medicine and Biology. 1999;25(7):1115-1129. [Link] [DOI:10.1016/S0301-5629(99)00061-7]
55. O'Donnell M, Skovorada AR, Shapo BM. Measurement of arterial wall motion using Fourier based speckle tracking algorithms. IEEE Ultrasonics Symposium, 8-11 Dec, 1991, Orlando, FL, USA. Piscataway: IEEE; 1991. 60- Shiina T, Doyley MM, Bamber JC. Strain imaging using combined RF and envelope autocorrelation processing. IEEE Ultrasonics Symposium, 3-6 Nov, 1996, San Antonio, TX, USA. Piscataway: IEEE; 1996. [Link]
56. Varghese T, Bilgen M, Ophir J. Multiresolution imaging in elastography. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control. 1998;45(1):65-75. [Link] [DOI:10.1109/58.646912]
57. Talhami HE, Wilson LS, Neale ML. Spectral tissue strain: A new technique for imaging tissue strain using intravascular ultrasound. Ultrasound in Medicine and Biology. 1994;20(8):759-772. [Link] [DOI:10.1016/0301-5629(94)90033-7]
58. Varghese T, Konofagou EE, Ophir J, Alam SK, Bilgen M. Direct strain estimation in elastography using spectral cross-correlation. Ultrasound in Medicine and Biology. 2000;26(9):1525-1537. [Link] [DOI:10.1016/S0301-5629(00)00316-1]
59. Ophir J, Alam SK, Garra BS, Kallel F, Konofagou EE, Krouskop T, et al. Elastography: Imaging the elastic properties of soft tissues with ultrasound. Journal of Medical Ultrasonics (2001). 2002;29(4):155. [Link] [DOI:10.1007/BF02480847]
60. 60- Shiina T, Doyley MM, Bamber JC. Strain imaging using combined RF and envelope autocorrelation processing. IEEE Ultrasonics Symposium, 3-6 Nov, 1996, San Antonio, TX, USA. Piscataway: IEEE; 1996. 72- Heimdal A, D'hooge J, Bijnens B, Sutherland G, Torp H. In vitro validation of in-plane strain rate imaging, a new ultrasound technique for evaluating regional myocardial deformation based on tissue Doppler imaging. Echocardiography. 1998;18(8 Pt 2):S40. [Link]
61. Pesavento A, Perrey C, Krueger M, Ermert H. A time-efficient and accurate strain estimation concept for ultrasonic elastography using iterative phase zero estimation. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control. 1999;46(5):1057-1067. [Link] [DOI:10.1109/58.796111]
62. Varghese T, Ophir J. Performance optimization in elastography: Multicompression with temporal stretching. Ultrasonic Imaging. 1996;18(3):193-214. https://doi.org/10.1006/uimg.1996.0011 [Link] [DOI:10.1177/016173469601800303]
63. Konofagou EE, Ophir J, Kallel F, Varghese T. Elastographic dynamic range expansion using variable applied strains. Ultrasonic Imaging. 1997;19(2):145-166. [Link] [DOI:10.1177/016173469701900205]
64. Kallel F, Ophir J. A least-squares strain estimator for elastography. Ultrasonic Imaging. 1997;19(3):195-208. [Link] [DOI:10.1177/016173469701900303]
65. Alam SK, Ophir J, Konofagou EE. An adaptive strain estimator for elastography. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control. 1998;45(2):461-472. [Link] [DOI:10.1109/58.660156]
66. Varghese T, Ophir J. A theoretical framework for performance characterization of elastography: The strain filter. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control. 1997;44(1):164-172. [Link] [DOI:10.1109/58.585212]
67. Varghese T, Ophir J. An analysis of elastographic contrast-to-noise ratio. Ultrasound in Medicine and Biology. 1998;24(6):915-924. [Link] [DOI:10.1016/S0301-5629(98)00047-7]
68. Srinivasan S, Righetti R, Ophir J. Trade-offs between the axial resolution and the signal-to-noise ratio in elastography. Ultrasound in Medicine and Biology. 2003;29(6):847-866. [Link] [DOI:10.1016/S0301-5629(03)00037-1]
69. Pesavento A, Lorenz A, Siebers S, Ermert H. New real-time strain imaging concepts using diagnostic ultrasound. Physics in Medicine & Biology. 2000;45(6):1423-1435. [Link] [DOI:10.1088/0031-9155/45/6/302]
70. Shiina T, Nitta N, Ueno E, Bamber JC. Real time tissue elasticity imaging using the combined autocorrelation method. Journal of Medical Ultrasonics. 2002;29(3):119-128. [Link] [DOI:10.1007/BF02481234]
71. Heimdal A, Støylen A, Torp H, Skjaerpe T. Real-time strain rate imaging of the left ventricle by ultrasound. Journal of the American Society of Echocardiography. 1998;11(11):1013-1019. [Link] [DOI:10.1016/S0894-7317(98)70151-8]
72. Heimdal A, D'hooge J, Bijnens B, Sutherland G, Torp H. In vitro validation of in-plane strain rate imaging, a new ultrasound technique for evaluating regional myocardial deformation based on tissue Doppler imaging. Echocardiography. 1998;18(8 Pt 2):S40. [Link]
73. Bohs LN, Friemel BH, Trahey GE. Experimental velocity profiles and volumetric flow via two-dimensional speckle tracking. Ultrasound in Medicine and Biology. 1995;21(7):885-898. [Link] [DOI:10.1016/0301-5629(95)00034-O]
74. Konofagou E, Ophir J. A new elastographic method for estimation and imaging of lateral displacements, lateral strains, corrected axial strains and Poisson's ratios in tissues. Ultrasound in Medicine and Biology. 1998;24(8):1183-1199. [Link] [DOI:10.1016/S0301-5629(98)00109-4]
75. Chen H, Shi H, Varghese T. Improvement of elastographic displacement estimation using a two-step cross-correlation method. Ultrasound in Medicine and Biology. 2007;33(1):48-56. [Link] [DOI:10.1016/j.ultrasmedbio.2006.07.022]
76. Viola F, Walker WF. A comparison of the performance of time-delay estimators in medical ultrasound. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control. 2003;50(4):392-401. [Link] [DOI:10.1109/TUFFC.2003.1197962]
77. Luo J, Konofagou E. A fast normalized cross-correlation calculation method for motion estimation. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control. 2010;57(6):1347-1357. [Link] [DOI:10.1109/TUFFC.2010.1554]
78. Céspedes I, Huang Y, Ophir J, Spratt S. Methods for estimation of subsample time delays of digitized echo signals. Ultrasonic Imaging. 1995;17(2):142-171. https://doi.org/10.1006/uimg.1995.1007 [Link] [DOI:10.1177/016173469501700204]
79. Varghese T, Ophir J, Konofagou E, Kallel F, Righetti R. Tradeoffs in elastographic imaging. Ultrasonic Imaging. 2001;23(4):216-248. [Link] [DOI:10.1177/016173460102300402]
80. Varghese T, Ophir J. Enhancement of echo-signal correlation in elastography using temporal stretching. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control. 1997;44(1):173-180. [Link] [DOI:10.1109/58.585213]
81. Garra BS. Tissue elasticity imaging using ultrasound. Applied Radiology. 2011;40(4):24. [Link]
82. Righetti R, Ophir J, Ktonas P. Axial resolution in elastography. Ultrasound in Medicine and Biology. 2002;28(1):101-113. [Link] [DOI:10.1016/S0301-5629(01)00495-1]
83. Walker WF, Trahey GE. A fundamental limit on delay estimation using partially correlated speckle signals. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control. 1995;42(2):301-308. [Link] [DOI:10.1109/58.365243]
84. Fenster A, Lacefield JC, editors. Ultrasound imaging and therapy. 1st Edition. Boca Raton: CRC Press; 2015. p. 241. [Link] [DOI:10.1201/b18467]
85. Rivaz H, Fleming I, Assumpcao L, Fichtinger G, Hamper U, Choti M, et al. Ablation monitoring with elastography: 2D in-vivo and 3D ex-vivo studies. Medical Image Computing and Computer Assisted Intervention. 2008;11(Pt 2):458-466. [Link] [DOI:10.1007/978-3-540-85990-1_55]
86. Han Y, Kim DW, Kwon HJ. Application of digital image cross-correlation and smoothing function to the diagnosis of breast cancer. Journal of the Mechanical Behavior of Biomedical Materials. 2012;14:7-18. [Link] [DOI:10.1016/j.jmbbm.2012.05.007]
87. Sayed A, Layne G, Abraham J, Mukdadi O. 3D ultrasound elastographic imaging and characterization of breast cancer in vivo. Proceedings of the ASME 2012 International Mechanical Engineering Congress and Exposition, November 9-15, 2012, Houston, Texas, USA. New York: ASME; 2012. pp. 941-951. [Link]
88. Lemoigne Y, Caner A, Rahal G, editors. Physics for medical imaging applications. Dordrecht: Springer; 2007. [Link] [DOI:10.1007/978-1-4020-5653-6]
89. Pellot-Barakat C, Frouin F, Insana MF, Herment A. Ultrasound elastography based on multiscale estimations of regularized displacement fields. IEEE Transactions on Medical Imaging. 2004;23(2):153-163. [Link] [DOI:10.1109/TMI.2003.822825]
90. Chernak Slane L, Thelen DG. The use of 2D ultrasound elastography for measuring tendon motion and strain. Journal of Biomechanics. 2014;47(3):750-754. [Link] [DOI:10.1016/j.jbiomech.2013.11.023]
91. Ma C, Varghese T. Comparison of cardiac displacement and strain imaging using ultrasound radiofrequency and envelope signals. Ultrasonics. 2013;53(3):782-792. [Link] [DOI:10.1016/j.ultras.2012.11.005]
92. Lopata RG, Nillesen MM, Hansen HH, Gerrits IH, Thijssen JM, de Korte CL. Performance evaluation of methods for two-dimensional displacement and strain estimation using ultrasound radio frequency data. Ultrasound in Medicine and Biology. 2009;35(5):796-812. [Link] [DOI:10.1016/j.ultrasmedbio.2008.11.002]
93. Zahiri-Azar R, Salcudean SE. Motion estimation in ultrasound images using time domain cross correlation with prior estimates. IEEE Transactions on Biomedical Engineering. 2006;53(10):1990-2000. [Link] [DOI:10.1109/TBME.2006.881780]
94. Hoyt K, Forsberg F, Ophir J. Comparison of shift estimation strategies in spectral elastography. Ultrasonics. 2006;44(1):99-108. [Link] [DOI:10.1016/j.ultras.2005.08.006]
95. Rivaz H, Boctor E, Foroughi P, Zellars R, Fichtinger G, Hager G. Ultrasound elastography: A dynamic programming approach. IEEE Transactions on Medical Imaging. 2008;27(10):1373-1377. [Link] [DOI:10.1109/TMI.2008.917243]
96. Rivaz H, Boctor EM, Choti MA, Hager GD. Real-time regularized ultrasound elastography. IEEE Transactions on Medical Imaging. 2011;30(4):928-945. [Link] [DOI:10.1109/TMI.2010.2091966]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author