Volume 19, Issue 7 (July 2019)                   Modares Mechanical Engineering 2019, 19(7): 1601-1611 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Mohammadi M, Nazari M, Kayhani M. Experimental Study and Visualization of Particle/Bubble Collision in the Presence of Fluid. Modares Mechanical Engineering 2019; 19 (7) :1601-1611
URL: http://mme.modares.ac.ir/article-15-18361-en.html
1- Fluid Mechanics Department, Mechanical & Mechatronics Engineering Faculty, Shahrood University of Technology, Shahrood, Iran
2- Fluid Mechanics Department, Mechanical & Mechatronics Engineering Faculty, Shahrood University of Technology, Shahrood, Iran , mnazari@shahroodut.ac.ir
Abstract:   (6953 Views)
Flotation is the most important method for the separation of minerals. A key element of recovering valuable minerals through flotation is particles/air bubbles interaction in water. In the present paper, an experimental approach is proposed to study the collision of fixed bubble and particles. The results of this investigation are widely used in the application of plastic particle flotation. In this paper, by creating a bubble with a diameter of 5.5 mm through injection pump in fixed fluid, the plastic particles (with a diameter of 1.5 mm) are released on the surface of the bubble. The polar position of the particles on the bubble surface is changed by variations of the falling height and increasing the height of release leads to a decrease in the polar position of collision on the surface of the bubble. The initial collision angles at the release heights of 18.68mm, 13.36mm, and 10mm are 18.01, 15.15, and 18.8 degrees, respectively. In this study, the effect of forces of drag, capillary, pressure, weight, and buoyancy on the attachment and detachment of the particle on the surface of the bubble has been reported. Due to the low sliding velocity of the particle on the surface of the bubble, the drag force is negligible at the attachment and detachment case and floating and gravity forces are also constant. The main roles in effective forces of collapse are capillary and pressure forces. The effect of the three-phase contact line on the capillary and pressure forces is also analyzed, which is one of the innovations of the present study.
Full-Text [PDF 686 kb]   (2059 Downloads)    
Article Type: Original Research | Subject: Experimental Fluid Mechanics
Received: 2018/04/2 | Accepted: 2018/12/23 | Published: 2019/07/1

References
1. Nguyen AV, Evans GM. Attachment interaction between air bubbles and particles in froth flotation. Experimental Thermal and Fluid Science. 2004;28(5):381-385. [Link] [DOI:10.1016/j.expthermflusci.2002.12.001]
2. Dobby GS, Finch JA. A model of particle sliding time for flotation size bubbles. Journal of Colloid and Interface Science. 1986;109(2):493-498. [Link] [DOI:10.1016/0021-9797(86)90327-9]
3. Schulze HJ. Hydrodynamics of bubble-mineral particle collisions. Mineral Procesing and Extractive Metallurgy Review. 1989;5(1-4):43-76. [Link] [DOI:10.1080/08827508908952644]
4. Hewitt D, Fornasiero D, Ralston J. Bubble particle attachment efficiency. Minerals Engineering. 1994;7(5-6):657-665. [Link] [DOI:10.1016/0892-6875(94)90097-3]
5. Nguyen AV, Schulze HJ, Ralston J. Elementary steps in particle-bubble attachment. International Journal of Mineral Processing. 1997;51(1-4):183-195. [Link] [DOI:10.1016/S0301-7516(97)00030-6]
6. Dai Z, Fornasiero D, Ralston J. Particle-bubble attachment in mineral flotation. Journal of Colloid and Interface Science. 1999;217(1):70-76. [Link] [DOI:10.1006/jcis.1999.6319]
7. Ralston J, Fornasiero D, Hayes R. Bubble-particle attachment and detachment in flotation. International Journal of Mineral Processing. 1999;56(1-4):133-164. [Link] [DOI:10.1016/S0301-7516(98)00046-5]
8. Dai Z, Fornasiero D, Ralston J. Particle-bubble collision models - a review. Advances in Colloid and Interface Science. 2000;85(2-3):231-256. [Link] [DOI:10.1016/S0001-8686(99)00030-5]
9. Phan CM, Nguyen AV, Miller JD, Evans GM, Jameson GJ. Investigations of bubble-particle interactions. International Journal of Mineral Processing. 2003;72(1-4):239-254. [Link] [DOI:10.1016/S0301-7516(03)00102-9]
10. Nguyen AV, Evans GM. Movement of fine particles on an air bubble surface studied using high-speed video microscopy. Journal of Colloid and Interface Science. 2004;273(1):271-277. [Link] [DOI:10.1016/j.jcis.2003.12.066]
11. Tao D. Role of bubble size in flotation of coarse and fine particles - a review. Separation Science and Technology. 2005;39(4):741-760. [Link] [DOI:10.1081/SS-120028444]
12. Verrelli DI, Koh PTL, Nguyen AV. Particle-bubble interaction and attachment in flotation. Chemical Engineering Science. 2011;66(23):5910-5921. [Link] [DOI:10.1016/j.ces.2011.08.016]
13. Hubička M, Basařová P, Vejražka J. Collision of a small rising bubble with a large falling particle. International Journal of Mineral Processing. 2013;121:21-30. [Link] [DOI:10.1016/j.minpro.2013.02.013]
14. Gao Y, Wang G, Evans GM, Wanless EJ, Sathe M, Mitra S, et al. Modelling the motion of a collected particle over a bubble surface. Procedia Engineering. 2015;102:1346-1355. [Link] [DOI:10.1016/j.proeng.2015.01.266]
15. Brabcová Z, Karapantsios T, Kostoglou M, Basařová P, Matis K. Bubble-particle collision interaction in flotation systems. Colloids and Surfaces A Physicochemical and Engineering Aspects. 2015;473:95-103. [Link] [DOI:10.1016/j.colsurfa.2014.11.040]
16. Wang CQ, Wang H, Wu BX, Liu Q. Boiling treatment of ABS and PS plastics for flotation separation. Waste Management. 2014;34(7):1206-1210. [Link] [DOI:10.1016/j.wasman.2014.02.005]
17. Wang CQ, Wang H, Fu JG, Liu YN. Flotation separation of waste plastics for recycling - a review. Waste Management. 2015;41:28-38. [Link] [DOI:10.1016/j.wasman.2015.03.027]
18. Wang C, Wang H, Liu Y, Huang L. Optimization of surface treatment for flotation separation of polyvinyl chloride and polyethylene terephthalate waste plastics using response surface methodology. Journal of Cleaner Production. 2016;139:866-872. [Link] [DOI:10.1016/j.jclepro.2016.08.111]
19. Shen H, Pugh RJ, Forssberg E. Floatability, selectivity and flotation separation of plastics by using a surfactant. Colloids and Surfaces A Physicochemical and Engineering Aspects. 2002;196(1):63-70. [Link] [DOI:10.1016/S0927-7757(01)00706-3]
20. Shen H, Forssberg E, Pugh RJ. Selective flotation separation of plastics by particle control. Resources Conservation and Recycling. 2001;33(1):37-50. [Link] [DOI:10.1016/S0921-3449(01)00056-8]
21. Shibata J, Matsumoto S, Yamamoto H, Kusaka E, Pradip P. Flotation separation of plastics using selective depressants. International Journal of Mineral Processing. 1996;48(3-4):127-134. [Link] [DOI:10.1016/S0301-7516(96)00021-X]
22. Wang W, Zhou Z, Nandakumar K, Xu Z, Masliyah JH. Attachment of individual particles to a stationary air bubble in model systems. International Journal of Mineral Processing. 2003;68(1-4):47-69. [Link] [DOI:10.1016/S0301-7516(02)00050-9]
23. Nazari M, Babazadeh Baie N, Ashouri M, Shahmardan MM, Tamayol A. Unsteady heat transfer from a reservoir fluid by employing metal foam tube, helically tube and straight tube: A comparative experimental study. Applied Thermal Engineering. 2017;111:39-48. [Link] [DOI:10.1016/j.applthermaleng.2016.07.195]
24. Nazari M, Ashouri M, Kayhani MH, Tamayol A. Experimental study of convective heat transfer of a nanofluid through a pipe filled with metal foam. International Journal of Thermal Sciences. 2015;88:33-39. [Link] [DOI:10.1016/j.ijthermalsci.2014.08.013]
25. Nguyen AV, Schultze HJ. Colloidal science of flotation. Basel: Marcel Dekker Inc; 2004. [Link] [DOI:10.1201/9781482276411]
26. Nguyen AV, Evans GM. Axisymmetric approach of a solid sphere toward a non-deformable planar slip interface in the normal stagnation flow-development of global rational approximations for resistance coefficients. International Journal of Multiphase Flow. 2002;28(8):1369-1380. [Link] [DOI:10.1016/S0301-9322(02)00025-3]
27. Nguyen AV, Evans GM. Exact and global rational approximate expressions for resistance coefficients for a colloidal solid sphere moving in a quiescent liquid parallel to a slip gas-liquid interface. Journal of Colloid and Interface Science. 2004;273(1):262-270. [Link] [DOI:10.1016/j.jcis.2003.12.044]
28. Wang G, Gao Y, Mitra S, Li Y, Zhou Sh, Evans G. Instantaneous bond number for a particle detaching from a bubble. International Journal of Mineral Processing. 2015;142:22-29. [Link] [DOI:10.1016/j.minpro.2015.03.012]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.