Volume 19, Issue 1 (January 2019)                   Modares Mechanical Engineering 2019, 19(1): 211-222 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Azdast T, Hasanzadeh R. A Review on Principles and Fundamentals of Fabrication of Polymeric Foams in Regards to Increasing Cell Density/ Reducing Cell Size. Modares Mechanical Engineering 2019; 19 (1) :211-222
URL: http://mme.modares.ac.ir/article-15-18863-en.html
1- Mechanical Engineering Department, Engineering Faculty, Urmia University, Urmia, Iran , t.azdast@urmia.ac.ir
2- Mechanical Engineering Department, Engineering Faculty, Urmia University, Urmia, Iran
Abstract:   (4425 Views)
Nowadays, polymeric foams have attracted special attention in scientific and industrial societies due to their unique properties such as high strength to weight ratio, excellent thermal-insulation, sound-insulation, and good mechanical properties. One of the main goals of the studies of polymeric foams is to increase the cell density and aligning with it, is to reduce the cell size of these materials. Researchers have shown that the extraordinary properties of polymeric foams such as superior thermal-insulation can be achieved by increasing the cell density/ decreasing the cell size. In this regard, firstly the most important processes for the production of polymeric foams (batch, extrusion, and injection molding processes) were studied in the present research. Then, cell nucleation stage as the most important process for achieving high cell density/ low cell size is studied in details. In the following, the most important researches in the field of polymeric foams were introduced in which, the highest cell densities/ lowest cell sizes were achieved. The investigations show that the most significant results (highest cell densities/ lowest cell sizes) are belonging to the batch process. Also, the use of nucleating agents, increasing the solubility of blowing agent into the polymer, and the use of nanoparticles are the most efficient solutions in order to achieve microcellular and nanocellular structures.
Full-Text [PDF 598 kb]   (2643 Downloads)    
Article Type: Analytic Review | Subject: Elasticity
Received: 2018/04/11 | Accepted: 2018/10/14 | Published: 2019/01/1

References
1. Wypych G. Handbook of polymers. Amsterdam: Elsevier Science; 2016. [Link]
2. Lee ST, Ramesh NS, editors. Polymeric foams: Mechanisms and materials. Boca Raton: CRC Press; 2004. [Link] [DOI:10.1201/9780203506141]
3. Wicklein B, Kocjan A, Salazar-Alvarez G, Carosio F, Camino G, Antonietti M, et al. Thermally insulating and fire-retardant lightweight anisotropic foams based on nanocellulose and graphene oxide. Nature Nanotechnology. 2015;10(3):277-283. [Link] [DOI:10.1038/nnano.2014.248]
4. Verdejo R, Stämpfli R, Alvarez-Lainez M, Mourad S, Rodriguez-Perez MA, Brühwiler PA, et al. Enhanced acoustic damping in flexible polyurethane foams filled with carbon nanotubes. Composites Science and Technology. 2009;69(10):1564-1569. [Link] [DOI:10.1016/j.compscitech.2008.07.003]
5. Notario B, Pinto J, Rodríguez-Pérez MA. Towards a new generation of polymeric foams: PMMA nanocellular foams with enhanced physical properties. Polymer. 2015;63:116-126. [Link] [DOI:10.1016/j.polymer.2015.03.003]
6. Altan M. Thermoplastic foams: Processing, manufacturing, and characterization. In: Çankaya N, editor. Polymerization. London: IntechOpen; 2018. pp. 117-137. [Link]
7. Roberts RD, Kwok JC. Styrene-maleic anhydride copolymer foam for heat resistant packaging. Journal of Cellular Plastics. 2007;43(2):135-143. [Link] [DOI:10.1177/0021955X06074329]
8. Sorrentino L, Aurilia M, Iannace S. Polymeric foams from high‐performance thermoplastics. Advances in Polymer Technology. 2011;30(3):234-243. [Link] [DOI:10.1002/adv.20219]
9. Lee RE, Hasanzadeh R, Azdast T. A multi-criteria decision analysis on injection moulding of polymeric microcellular nanocomposite foams containing multi-walled carbon nanotubes. Plastics Rubber and Composites. 2017;46(4):155-162. [Link] [DOI:10.1080/14658011.2017.1300210]
10. Okolieocha C, Raps D, Subramaniam K, Altstädt V. Microcellular to nanocellular polymer foams: Progress (2004-2015) and future directions - a review. European Polymer Journal. 2015;73:500-519. [Link] [DOI:10.1016/j.eurpolymj.2015.11.001]
11. Bureau MN, Kumar V. Fracture toughness of high density polycarbonate microcellular foams. Journal of Cellular Plastics. 2006;42(3):229-240. [Link] [DOI:10.1177/0021955X06063512]
12. Kumar V, Vander Wel M, Weller J, Seeler KA. Experimental characterization of the tensile behavior of microcellular polycarbonate foams. Journal of Engineering Materials and Technology. 1994;116(4):439-445. [Link] [DOI:10.1115/1.2904310]
13. Matuana LM, Park CB, Balatinecz JJ. Cell morphology and property relationships of microcellular foamed pvc/wood‐fiber composites. Polymer Engineering and Science. 1998;38(11):1862-1872. [Link] [DOI:10.1002/pen.10356]
14. Okolieocha C, Beckert F, Herling M, Breu J, Mülhaupt R, Altstädt V. Preparation of microcellular low-density PMMA nanocomposite foams: Influence of different fillers on the mechanical, rheological and cell morphological properties. Composites Science and Technology. 2015;118:108-116. [Link] [DOI:10.1016/j.compscitech.2015.08.016]
15. Notario B, Pinto J, Solorzano E, De Saja JA, Dumon M, Rodríguez-Pérez MA. Experimental validation of the Knudsen effect in nanocellular polymeric foams. Polymer. 2015;56:57-67. [Link] [DOI:10.1016/j.polymer.2014.10.006]
16. Wang G, Wang C, Zhao J, Wang G, Park CB, Zhao G. Modelling of thermal transport through a nanocellular polymer foam: Toward the generation of a new superinsulating material. Nanoscale. 2017;9(18):5996-6009. [Link] [DOI:10.1039/C7NR00327G]
17. Ruiz JAR, Vincent M, Agassant JF, Sadik T, Pillon C, Carrot C. Polymer foaming with chemical blowing agents: Experiment and modeling. Polymer Engineering and Science. 2015;55(9):2018-2029. [Link] [DOI:10.1002/pen.24044]
18. Nalawade SP, Picchioni F, Janssen LPBM. Supercritical carbon dioxide as a green solvent for processing polymer melts: Processing aspects and applications. Progress in Polymer Science. 2006;31(1):19-43. [Link] [DOI:10.1016/j.progpolymsci.2005.08.002]
19. Sauceau M, Fages J, Common A, Nikitine C, Rodier E. New challenges in polymer foaming: A review of extrusion processes assisted by supercritical carbon dioxide. Progress in Polymer Science. 2011;36(6):749-766. [Link] [DOI:10.1016/j.progpolymsci.2010.12.004]
20. Azdast T, Lee EK, Lee K, Park CB, Behravesh AH, Folland R, et al. Extrusion foaming of high-melt-strength PP with supercritical carbon dioxide II - expansion behaviors. In: Rapra Technology, Whalen L, Reedy MME, Bowman JM, Leung SN,. Robin ML, et al. Blowing agents and foaming processes 2008: Conference proceedings. [Link]
21. Shrewsbury: iSmithers Rapra Publishing; 2008. [Link]
22. Lotti C, Bretas RES. Correlations between injection molding parameters, morphology and mechanical properties of PPS using artificial neural networks. International Polymer Processing. 2006;21(2):104-115. [Link] [DOI:10.3139/217.0050]
23. Bledzki AK, Kirschling H, Rohleder M, Čate A. Correlation between injection moulding processing parameters and mechanical properties of microcellular polycarbonate. Journal of Cellular Plastics. 2012;48(4):301-340. [Link] [DOI:10.1177/0021955X12441193]
24. Kramschuster A, Gong S, Turng LS, Li T, Li T. Injection-molded solid and microcellular polylactide and polylactide nanocomposites. Journal of Biobased Materials and Bioenergy. 2007;1(1):37-45. [Link] [DOI:10.1166/jbmb.2007.004]
25. Pilla S, Kramschuster A, Yang L, Lee J, Gong S, Turng LS. Microcellular injection-molding of polylactide with chain-extender. Materials Science and Engineering C. 2009;29(4):1258-1265. [Link] [DOI:10.1016/j.msec.2008.10.027]
26. Ameli A, Jahani D, Nofar M, Jung PU, Park CB. Development of high void fraction polylactide composite foams using injection molding: Mechanical and thermal insulation properties. Composites Science and Technology. 2014;90:88-95. [Link] [DOI:10.1016/j.compscitech.2013.10.019]
27. Najafi N, Heuzey MC, Carreau PJ, Therriault D, Park CB. Mechanical and morphological properties of injection molded linear and branched-polylactide (PLA) nanocomposite foams. European Polymer Journal. 2015;73:455-465. [Link] [DOI:10.1016/j.eurpolymj.2015.11.003]
28. Peinado V, García L, Fernández Á, Castell P. Novel lightweight foamed poly (lactic acid) reinforced with different loadings of functionalised Sepiolite. Composites Science and Technology. 2014;101:17-23. [Link] [DOI:10.1016/j.compscitech.2014.06.025]
29. Pantani R, Volpe V, Titomanlio G. Foam injection molding of poly (lactic acid) with environmentally friendly physical blowing agents. Journal of Materials Processing Technology. 2014;214(12):3098-3107. [Link] [DOI:10.1016/j.jmatprotec.2014.07.002]
30. Hasanzadeh R, Azdast T, Doniavi A, Esmaili P, Mamaghani S, Lee RE. Experimental investigation of properties of polymeric nanocomposite foams containing multi-walled carbon nanotubes using Taguchi method. Journal of Science and Technology of Composites. 2016;2(4):37-44. [Persian] [Link]
31. Colton JS, Suh NP. Nucleation of microcellular foam: Theory and practice. Polymer Engineering and Science. 1987;27(7):500-503. [Link] [DOI:10.1002/pen.760270704]
32. Colton JS, Suh NP. The nucleation of microcellular thermoplastic foam with additives: Part I: Theoretical considerations. Polymer Engineering and Science. 1987;27(7):485-492. [Link] [DOI:10.1002/pen.760270702]
33. Shafi MA, Joshi K, Flumerfelt RW. Bubble size distributions in freely expanded polymer foams. Chemical Engineering Science. 1997;52(4):635-644. [Link] [DOI:10.1016/S0009-2509(96)00433-2]
34. Kim Y, Park CB, Chen P, Thompson RB. Origins of the failure of classical nucleation theory for nanocellular polymer foams. Soft Matter. 2011;7(16):7351-7358. [Link] [DOI:10.1039/c1sm05575e]
35. Guo Q, Wang J, Park CB, Ohshima M. A microcellular foaming simulation system with a high pressure-drop rate. Industrial & Engineering Chemistry Research. 2006;45(18):6153-6161. [Link] [DOI:10.1021/ie060105w]
36. Leung SN, Wong A, Wang LC, Park CB. Mechanism of extensional stress-induced cell formation in polymeric foaming processes with the presence of nucleating agents. The Journal of Supercritical Fluids. 2012;63:187-198. [Link] [DOI:10.1016/j.supflu.2011.12.018]
37. Wong A, Wijnands SFL, Kuboki T, Park CB. Mechanisms of nanoclay-enhanced plastic foaming processes: Effects of nanoclay intercalation and exfoliation. Journal of Nanoparticle Research. 2013;15:1815. [Link] [DOI:10.1007/s11051-013-1815-y]
38. Leung SN, Wong A, Guo Q, Park CB, Zong JH. Change in the critical nucleation radius and its impact on cell stability during polymeric foaming processes. Chemical Engineering Science. 2009;64(23):4899-4907. [Link] [DOI:10.1016/j.ces.2009.07.025]
39. Kim SG, Leung SN, Park CB, Sain M. The effect of dispersed elastomer particle size on heterogeneous nucleation of TPO with N2 foaming. Chemical Engineering Science. 2011;66(16):3675-3686. [Link] [DOI:10.1016/j.ces.2011.05.003]
40. Turnbull D, Vonnegut B. Nucleation catalysis. Industrial & Engineering Chemistry. 1952;44(6):1292-1298. [Link] [DOI:10.1021/ie50510a031]
41. Fletcher NH. Size effect in heterogeneous nucleation. The Journal of Chemical Physics. 1958;29(3):572. [Link] [DOI:10.1063/1.1744540]
42. Zhai W, Yu J, Wu L, Ma W, He J. Heterogeneous nucleation uniformizing cell size distribution in microcellular nanocomposites foams. Polymer. 2006;47(21):7580-7589. [Link] [DOI:10.1016/j.polymer.2006.08.034]
43. Feng JJ, Bertelo CA. Prediction of bubble growth and size distribution in polymer foaming based on a new heterogeneous nucleation model. Journal of Rheology. 2004;48(2):439. [Link] [DOI:10.1122/1.1645518]
44. Hasan MM, Li YG, Li G, Park CB, Chen P. Determination of solubilities of CO2 in linear and branched polypropylene using a magnetic suspension balance and a PVT apparatus. Journal of Chemical & Engineering Data. 2010;55(11):4885-4895. [Link] [DOI:10.1021/je100488v]
45. Rindfleisch F, Di Noia TP, Mc Hugh MA. Solubility of polymers and copolymers in supercritical CO2. The Journal of Physical Chemistry. 1996;100(38):15581-15587. [Link] [DOI:10.1021/jp9615823]
46. Han D, Tong X, Boissière O, Zhao Y. General strategy for making CO2-switchable polymers. ACS Macro Letters. 2012;1(1):57-61. [Link] [DOI:10.1021/mz2000175]
47. Ameli A, Jahani D, Nofar MR, Jung PU, Park CB. Processing and characterization of solid and foamed injection-molded polylactide with talc. Journal of Cellular Plastics. 2013;49(4):351-374. [Link] [DOI:10.1177/0021955X13481993]
48. Naguib HE, Park CB, Lee PC. Effect of talc content on the volume expansion ratio of extruded PP foams. Journal of Cellular Plastics. 2003;39(6):499-511. [Link] [DOI:10.1177/0021955X03039247]
49. Wong A, Park CB. The effects of extensional stresses on the foamability of polystyrene-talc composites blown with carbon dioxide. Chemical Engineering Science. 2012;75:49-62. [Link] [DOI:10.1016/j.ces.2012.02.040]
50. Marrazzo C, Di Maio E, Iannace S. Conventional and nanometric nucleating agents in poly (ϵ-caprolactone) foaming: Crystals vs. bubbles nucleation. Polymer Engineering and Science. 2008;48(2):336-344. [Link] [DOI:10.1002/pen.20937]
51. Leung SN, Wong A, Park CB, Zong JH. Ideal surface geometries of nucleating agents to enhance cell nucleation in polymeric foaming processes. Journal of Applied Polymer Science. 2008;108(6):3997-4003. [Link] [DOI:10.1002/app.28038]
52. Ramesh NS, Rasmussen DH, Campbell GA. The heterogeneous nucleation of microcellular foams assisted by the survival of microvoids in polymers containing low glass transition particles, part I: Mathematical modeling and numerical simulation. Polymer Engineering and Science. 1994;34(22):1685-1697. [Link] [DOI:10.1002/pen.760342206]
53. Lubetkin SD. Why is it much easier to nucleate gas bubbles than theory predicts?. Langmuir. 2003;19(7):2575-2587. [Link] [DOI:10.1021/la0266381]
54. Wang C, Leung SN, Bussmann M, Zhai WT, Park CB. Numerical investigation of nucleating-agent-enhanced heterogeneous nucleation. Industrial & Engineering Chemistry Research. 2010;49(24):12783-12792. [Link] [DOI:10.1021/ie1017207]
55. Lee YH, Park CB, Wang KH, Lee MH. HDPE-clay nanocomposite foams blown with supercritical CO2. Journal of Cellular Plastics. 2005;41(5):487-502. [Link] [DOI:10.1177/0021955X05056964]
56. Chen L, Ozisik R, Schadler LS. The influence of carbon nanotube aspect ratio on the foam morphology of MWNT/PMMA nanocomposite foams. Polymer. 2010;51(11):2368-2375. [Link] [DOI:10.1016/j.polymer.2010.03.042]
57. Taki K, Kitano D, Ohshima M. Effect of growing crystalline phase on bubble nucleation in poly (L-lactide)/CO2 batch foaming. Industrial & Engineering Chemistry Research. 2011;50(6):3247-3252. [Link] [DOI:10.1021/ie101637f]
58. Wong A, Guo Y, Park CB. Fundamental mechanisms of cell nucleation in polypropylene foaming with supercritical carbon dioxide - effects of extensional stresses and crystals. The Journal of Supercritical Fluids. 2013;79:142-151. [Link] [DOI:10.1016/j.supflu.2013.02.013]
59. Daryadel M, Azdast T, Hasanzadeh R, Molani S. Simultaneous decision analysis on the structural and mechanical properties of polymeric microcellular nanocomposites foamed using CO2. Journal of Applied Polymer Science. 2018;135(14):46098. [Link] [DOI:10.1002/app.46098]
60. Azerag B, Azdast T, Doniavi A, Mamaghani Shishavan S, Lee RE. Structural properties of batch foamed acrylonitrile butadiene styrene/nanoclay nanocomposites. International Journal of Mechanical and Materials Engineering. 2015;10:19. [Link] [DOI:10.1186/s40712-015-0045-8]
61. Costeux S, Zhu L. Low density thermoplastic nanofoams nucleated by nanoparticles. Polymer. 2013;54(11):2785-2795. [Link] [DOI:10.1016/j.polymer.2013.03.052]
62. Costeux S, Khan I, Bunker SP, Jeon HK. Experimental study and modeling of nanofoams formation from single phase acrylic copolymers. Journal of Cellular Plastics. 2014;51(2):197-221. [Link] [DOI:10.1177/0021955X14531972]
63. Costeux S, Bunker SP, Jeon HK. Homogeneous nanocellular foams from styrenic-acrylic polymer blends. Journal of Materials Research. 2013;28(17):2351-2365. [Link] [DOI:10.1557/jmr.2013.100]
64. Guo H, Kumar V. Some thermodynamic and kinetic low-temperature properties of the PC-CO2 system and morphological characteristics of solid-state PC nanofoams produced with liquid CO2. Polymer. 2015;56:46-56. [Link] [DOI:10.1016/j.polymer.2014.09.061]
65. Martín‐de León J, Bernardo V, Rodríguez‐Pérez MÁ. Key production parameters to obtain transparent nanocellular PMMA. Macromolecular Materials and Engineering. 2017;302(12):1700343. [Link] [DOI:10.1002/mame.201700343]
66. Larsen Å, Neldin C. Physical extruder foaming of poly (lactic acid) - processing and foam properties. Polymer Engineering and Science. 2013;53(5):941-949. [Link] [DOI:10.1002/pen.23341]
67. Rizvi A, Tabatabaei AR, Barzegari MR, Mahmood SH, Park CB. In situ fibrillation of CO2-philic polymers: Sustainable route to polymer foams in a continuous process. Polymer. 2013;54(17):4645-4652. [Link] [DOI:10.1016/j.polymer.2013.06.023]
68. Okolieocha C, Köppl T, Kerling S, Tölle FJ, Fathi A, Mülhaupt R, et al. Influence of graphene on the cell morphology and mechanical properties of extruded polystyrene foam. Journal of Cellular Plastics. 2015;51(4):413-426. [Link] [DOI:10.1177/0021955X14566084]
69. Rizvi SJA, Alaei MH, Yadav A, Bhatnagar N. Quantitative analysis of cell distribution in injection molded microcellular foam. Journal of Cellular Plastics. 2014;50(3):199-219. [Link] [DOI:10.1177/0021955X14524081]
70. Shaayegan V, Wang G, Park CB. Effect of foam processing parameters on bubble nucleation and growth dynamics in high-pressure foam injection molding. Chemical Engineering Science. 2016;155:27-37. [Link] [DOI:10.1016/j.ces.2016.07.040]
71. Li J, Chen Z, Wang X, Liu T, Zhou Y, Luo S. Cell morphology and mechanical properties of microcellular mucell® injection molded polyetherimide and polyetherimide/fillers composite foams. Journal of Applied Polymer Science. 2013;130(6):4171-4181. [Link] [DOI:10.1002/app.39698]
72. Zhou J, Yao Z, Zhou C, Wei D, Li S. Mechanical properties of PLA/PBS foamed composites reinforced by organophilic montmorillonite. Journal of Applied Polymer Science. 2014;131(18):40773. [Link] [DOI:10.1002/app.40773]
73. Wang L, Ando M, Kubota M, Ishihara S, Hikima Y, Ohshima M, et al. Effects of hydrophobic-modified cellulose nanofibers (CNFs) on cell morphology and mechanical properties of high void fraction polypropylene nanocomposite foams. Composites Part A Applied Science and Manufacturing. 2017;98:166-173. [Link] [DOI:10.1016/j.compositesa.2017.03.028]
74. Zhao J, Zhao Q, Wang L, Wang C, Guo B, Park CB, et al. Development of high thermal insulation and compressive strength BPP foams using mold-opening foam injection molding with in-situ fibrillated PTFE fibers. European Polymer Journal. 2018;98:1-10. [Link] [DOI:10.1016/j.eurpolymj.2017.11.001]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.