Volume 19, Issue 3 (2019)                   Modares Mechanical Engineering 2019, 19(3): 539-548 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Dabirpour V, Mohammadipour O. Numerical Investigation of Convection around Heated Circular Cylinder Wrapped with Bi-Disperse Porous Medium in Channel. Modares Mechanical Engineering. 2019; 19 (3) :539-548
URL: http://journals.modares.ac.ir/article-15-18991-en.html
1- Department of Mechanical Engineering, Payame Noor University (PNU), Mashhad, Iran
2- Department of Mechanical Engineering, Payame Noor University (PNU), Tehran, Iran , o.mohammadipour@pnu.ac.ir
Abstract:   (769 Views)
In this study, convective heat transfer around a heated circular cylinder covered with an annular porous medium in a flat channel was numerically investigated. To enhance the heat transfer, the porous medium is chosen to have a high thermal conductivity, whereas it is equipped with two different dispersions to reduce the pressure drop through the channel. To create two different dispersions (bi-disperse porous medium), the cylinder is covered uniformly by multiple porous fins with a porosity of 0.9. In this regard, the fin porosity will be the first levels of porosity (microscopic porosity) and the arrangement of fins will be referred to as the second levels (macroscopic porosity) of the porous medium. The main goal of this research is to investigate and optimize flow conditions to achieve the highest outlet temperature and the highest heat transfer rate, where the pressure drop is reduced to a minimum value. This optimization is carried out for flow Reynolds number of 60 to 120, the Darcy number of 10-3 to 10-5, macroscopic porosity of 0.25 to 0.75, and outer to inner fin ratios of 1.5 to 2. Numerical simulations are conducted, using the lattice Boltzmann method and the validity of simulations is assessed by the use of numerical and experimental data available in the literature. To optimize, the response surface methodology (RSM) with a central composite design is used and numerical results indicate that predictions obtained by RSM are in good agreement with actual flow condition in the optimum configuration. This research can provide new insight into the optimization process in heat exchanger designs.
 
 
Full-Text [PDF 1084 kb]   (469 Downloads)    

Received: 2018/04/16 | Accepted: 2018/10/23 | Published: 2019/03/1

References
1. 1- Layeghi M, Nouri-Borujerdi A. Fluid flow and heat transfer around circular cylinders in the presence and no-presence of porous media. Journal of Porous Media. 2004;7(3):239-247. [Link] [DOI:10.1615/JPorMedia.v7.i3.70]
2. Bhattacharyya S, Dhinakaran S, Khalili A. Fluid motion around and through a porous cylinder. Chemical Engineering Science. 2006;61(13):4451-4461. [Link] [DOI:10.1016/j.ces.2006.02.012]
3. Bhattacharyya S, Singh AK. Augmentation of heat transfer from a solid cylinder wrapped with a porous layer. International Journal of Heat and Mass Transfer. 2009;52(7-8):1991-2001. [Link] [DOI:10.1016/j.ijheatmasstransfer.2008.08.041]
4. Rong FM, Guo ZL, Lu JH, Shi BC. Numerical simulation of the flow around a porous covering square cylinder in a channel via lattice Boltzmann method. International Journal for Numerical Methods in Fluids. 2011;65(10):1217-1230. [Link] [DOI:10.1002/fld.2237]
5. Odabaee M, Hooman K, Gurgenci H. Metal foam heat exchangers for heat transfer augmentation from a cylinder in cross-flow. Transport in Porous Media. 2011;86(3):911-923. [Link] [DOI:10.1007/s11242-010-9664-y]
6. Rashidi S, Tamayol A, Valipour MS, Shokri N. Fluid flow and forced convection heat transfer around a solid cylinder wrapped with a porous ring. International Journal of Heat and Mass Transfer. 2013;63:91-100. [Link] [DOI:10.1016/j.ijheatmasstransfer.2013.03.006]
7. Nield DA, Bejan A. Convection in porous media. 3rd Edition. New York: Springer Science & Business Media; 2006. [Link]
8. Vafai K, Editor. Handbook of porous media. 3rd Edition. Boca Raton: Crc Press; 2015. [Link]
9. Pop I, Ingham DB, Editors. Convective heat transfer: Mathematical and computational modelling of viscous fluids and porous media. 1st Edition. Pergamon: Elsevier; 2001. [Link]
10. Kaviany M. Principles of heat transfer in porous media. 2nd Edition. Berlin: Springer Science & Business Media; 2012. [Link]
11. Chen ZQ, Cheng P, Hsu CT. A theoretical and experimental study on stagnant thermal conductivity of bi-dispersed porous media. International Communications in Heat and Mass Transfer. 2000;27(5):601-610. [Link] [DOI:10.1016/S0735-1933(00)00142-1]
12. Imani G, Hooman K. Lattice Boltzmann pore scale simulation of natural convection in a differentially heated enclosure filled with a detached or attached bidisperse porous medium. Transport in Porous Media. 2017;116(1):91-113. [Link] [DOI:10.1007/s11242-016-0766-z]
13. Nield DA, Kuznetsov AV. A two-velocity two-temperature model for a bi-dispersed porous medium: Forced convection in a channel. Transport in Porous Media. 2005;59(3):325-339. [Link] [DOI:10.1007/s11242-004-1685-y]
14. Kuznetsov AV, Nield DA. Thermally developing forced convection in a bidisperse porous medium. Journal of Porous Media. 2006;9(5):393-402. [Link] [DOI:10.1615/JPorMedia.v9.i5.10]
15. Nield DA, Kuznetsov AV. Forced convection in a bi-disperse porous medium channel: A conjugate problem. International Journal of Heat and Mass Transfer. 2004;47(24):5375-3580. [Link] [DOI:10.1016/j.ijheatmasstransfer.2004.07.018]
16. Nield DA, Kuznetsov AV. Forced convection in a channel partly occupied by a bidisperse porous medium: Symmetric case. Journal of Heat Transfer. 2011;133(7):072601. [Link] [DOI:10.1115/1.4003667]
17. Nield DA, Kuznetsov AV. The onset of convection in a bidisperse porous medium. International Journal of Heat and Mass Transfer. 2006;49(17-18):3068-3074. [Link] [DOI:10.1016/j.ijheatmasstransfer.2006.02.008]
18. Nield DA, Kuznetsov AV. Natural convection about a vertical plate embedded in a bidisperse porous medium. International Journal of Heat and Mass Transfer. 2008;51(7-8):1658-1664. [Link] [DOI:10.1016/j.ijheatmasstransfer.2007.07.011]
19. Revnic C, Grosan T, Pop I, Ingham DB. Free convection in a square cavity filled with a bidisperse porous medium. International Journal of Thermal Sciences. 2009;48(10):1876-1883. [Link] [DOI:10.1016/j.ijthermalsci.2009.02.016]
20. Ghalambaz M, Hendizadeh H, Zargartalebi H, Pop I. Free convection in a square cavity filled with a tridisperse porous medium. Transport in Porous Media. 2017;116(1):379-392. [Link] [DOI:10.1007/s11242-016-0779-7]
21. Merrikh A, Mohamad A. Blockage effects in natural convection in differentially heated enclosures. Journal of Enhanced Heat Transfer. 2001;8(1):55-72. [Link] [DOI:10.1615/JEnhHeatTransf.v8.i1.50]
22. Merrikh AA, Lage JL. Natural convection in an enclosure with disconnected and conducting solid blocks. International Journal of Heat and Mass Transfer. 2005;48(7):1361-1372. [Link] [DOI:10.1016/j.ijheatmasstransfer.2004.09.043]
23. Merrikh AA, Lage J, Mohamad A. Natural convection in nonhomogeneous heat-generating media: Comparison of continuum and porous-continuum models. Journal of Porous Media. 2005;8(2):149-163. [Link] [DOI:10.1615/JPorMedia.v8.i2.40]
24. Braga EJ, De Lemos MJ. Heat transfer in enclosures having a fixed amount of solid material simulated with heterogeneous and homogeneous models. International Journal of Heat and Mass Transfer. 2005;48(23-24):4748-4765. [Link] [DOI:10.1016/j.ijheatmasstransfer.2005.05.016]
25. Braga EJ, De Lemos MJ. Laminar natural convection in cavities filled with circular and square rods. International Communications in Heat and Mass Transfer. 2005;32(10):1289-1297. [Link] [DOI:10.1016/j.icheatmasstransfer.2005.07.014]
26. Hooman K, Merrikh AA. Theoretical analysis of natural convection in an enclosure filled with disconnected conducting square solid blocks. Transport in Porous Media. 2010;85(2):641-651. [Link] [DOI:10.1007/s11242-010-9583-y]
27. Narasimhan A, Reddy BVK. Natural convection inside a bidisperse porous medium enclosure. Journal of Heat Transfer. 2010;132(1):012502. [Link] [DOI:10.1115/1.3192134]
28. Guo Z, Zhao TS. Lattice Boltzmann simulation of natural convection with temperature-dependent viscosity in a porous cavity. Progress in Computational Fluid Dynamics, an International Journal. 2004;5(1-2):110-117. [Link]
29. Guo Z, Zhao TS. A lattice Boltzmann model for convection heat transfer in porous media. Numerical Heat Transfer Part B Fundamentals. 2005;47(2):157-177. [Link] [DOI:10.1080/10407790590883405]
30. Mohamad AA, Kuzmin A. A critical evaluation of force term in lattice Boltzmann method, natural convection problem. International Journal of Heat and Mass Transfer. 2010;53(5-6):990-996. [Link] [DOI:10.1016/j.ijheatmasstransfer.2009.11.014]
31. Mohammadipour OR, Niazmand H, Succi S. General velocity, pressure, and initial condition for two-dimensional and three-dimensional lattice Boltzmann simulations. Physical Review E. 2017;95(3):033301. [Link] [DOI:10.1103/PhysRevE.95.033301]
32. Kim BS, Lee DS, Ha MY, Yoon HS. A numerical study of natural convection in a square enclosure with a circular cylinder at different vertical locations. International Journal of Heat and Mass Transfer. 2008;51(7-8):1888-1906. [Link] [DOI:10.1016/j.ijheatmasstransfer.2007.06.033]
33. Moukalled F, Acharya S. Natural convection in the annulus between concentric horizontal circular and square cylinders. Journal of Thermophysics and Heat Transfer. 1996;10(3):524-531. [Link] [DOI:10.2514/3.820]
34. Guo Z, Zhao TS. Lattice Boltzmann model for incompressible flows through porous media. Physical Review E. 2002;66(3):036304. [Link] [DOI:10.1103/PhysRevE.66.036304]
35. Bezerra MA, Santelli RE, Oliveira EP, Villar LS, Escaleira LA. Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta. 2008;76(5):965-977. [Link] [DOI:10.1016/j.talanta.2008.05.019]

Add your comments about this article : Your username or Email:
CAPTCHA code

Send email to the article author