Volume 19, Issue 4 (April 2019)                   Modares Mechanical Engineering 2019, 19(4): 789-800 | Back to browse issues page

XML Persian Abstract Print


1- Mechanical Engineering Faculty, Isfahan University of Technology, Isfahan, Iran
2- Mechanical Engineering Faculty, University of Tehran, Tehran, Iran
3- Mechanical Engineering Faculty, Sharif University of Technology, Tehran, Iran
4- Mechanical Engineering Faculty, Tarbiat Modares University, Tehran, Iran , mo.abedi@isrc.ac.ir
Abstract:   (8200 Views)
Reducing satellite solar panels temperature, to increase their electrical efficiency is of great importance. In this study, a novel methodology for optimal configuration design of heat pipes in a sun-pointing satellite utilizing the genetic algorithm is presented. The purpose of optimization is the thermal adjustment and design improvement of the solar panels for the satellite that is supposed to orbit in the Low Earth Orbit. Thermal simulations of satellite and solar panels are performed using SINDA/FLUINT and Thermal Desktop software. The computations are validated using experimental measurements of the satellite thermal model in a vacuum chamber and it was shown that the numerical analysis can produce reliable results. Then, applying the constraints of the problem, an optimization algorithm is introduced. This algorithm employs the thermal simulation software for solving the governing equations of the problem and then reports the results. The optimization was performed for the satellite hottest case (beta:90) and then, conducting an optimization procedure, the optimal configuration of heat pipes is achieved. In the results section, three different configurations, namely no heat pipes, the initial design for configuration of heat pipes and the optimal configuration of heat pipes, are investigated and compared. It was found that the optimal configuration using the genetic algorithm can reduce the temperature of solar arrays by up to 19°C relative to that in which no heat pipe was used. It was observed that an efficiency ratio enhancement is 10.4% for the solar panels of optimum configuration. The optimization could significantly reduce the temperature of the satellite internal equipment.
Full-Text [PDF 1227 kb]   (2946 Downloads)    
Article Type: Original Research | Subject: Aerospace Structures
Received: 2018/04/18 | Accepted: 2018/11/4 | Published: 2019/04/6

References
1. Sasaki S, Tanaka K, Higuchi K, Okuizumi N, Kawasaki Sh, Shinohara N, et al. A new concept of solar power satellite: Tethered-SPS. Acta Astronautica. 2007;60(3):153-165. [Link] [DOI:10.1016/j.actaastro.2006.07.010]
2. Habraken S, Defise JM, Collette JP, Rochus P, D'Odemont PA, Hogge M. Space solar arrays and concentrators. Acta Astronautica. 2001;48(5-12):421-429. [Link]
3. Makki A, Omer S, Sabir H. Advancements in hybrid photovoltaic systems for enhanced solar cells performance. Renewable and Sustainable Energy Reviews. 2015;41:658-684. [Link] [DOI:10.1016/j.rser.2014.08.069]
4. Ceylan I, Gürel AE, Demircan H, Aksu B. Cooling of a photovoltaic module with temperature controlled solar collector. Energy and Buildings. 2014;72:96-101. [Link] [DOI:10.1016/j.enbuild.2013.12.058]
5. Vaz CC, Miranda LCM, Perondi LF. Thermo-optical design analysis of space satellite solar arrays. 1st World Conference on Photovoltaic Energy Conversion-WCPEC (A Joint Conference of PVSC, PVSEC and PSEC), 5-9 December, 1994, Waikoloa, HI, USA. Piscataway: IEEE; 1994. p. 2045-2048. [Link]
6. Evans DL, Florschuetz LW. Cost studies on terrestrial photovoltaic power systems with sunlight concentration. Solar Energy. 1977;19(3):255-262. [Link] [DOI:10.1016/0038-092X(77)90068-8]
7. Grubišić-Čabo F, Nižetić S, Giuseppe Marco T. Photovoltaic panels: A review of the cooling techniques. Transactions of FAMENA. 2016;40(1):63-74. [Link]
8. Akbarzadeh A, Wadowski T. Heat pipe-based cooling systems for photovoltaic cells under concentrated solar radiation. Applied Thermal Engineering. 1996;16(1):81-87. [Link] [DOI:10.1016/1359-4311(95)00012-3]
9. Lee DI, Baek SW. Development of a heating system using CPV technology and heat pipes. Environmental Progress and Sustainable Energy. 2015;34(4):1197-1207. [Link] [DOI:10.1002/ep.12082]
10. Jakhar S, Soni MS, Gakkhar N. Historical and recent development of concentrating photovoltaic cooling technologies. Renewable and Sustainable Energy Reviews. 2016;60:41-59. [Link] [DOI:10.1016/j.rser.2016.01.083]
11. Gang P, Huide F, Huijuan Z, Jie J. Performance study and parametric analysis of a novel heat pipe PV/T system. Energy. 2012;37(1):384-395. [Link] [DOI:10.1016/j.energy.2011.11.017]
12. Moradgholi M, Nowee SM, Abrishamchi I. Application of heat pipe in an experimental investigation on a novel photovoltaic/thermal (PV/T) system. Solar Energy. 2014;107:82-88. [Link] [DOI:10.1016/j.solener.2014.05.018]
13. Sato D, Yamada N, Tanaka K. Thermal design of photovoltaic/microwave conversion hybrid panel for space solar power system. IEEE Journal of Photovoltaics. 2017;7(1):374-382. [Link] [DOI:10.1109/JPHOTOV.2016.2629843]
14. Mashaei PR, Shahryari M, Madani S. Analytical study of multiple evaporator heat pipe with nanofluid; A smart material for satellite equipment cooling application. Aerospace Science and Technology. 2016;59:112-121. [Link] [DOI:10.1016/j.ast.2016.10.018]
15. Sato D, Yamada N, Tanaka K. Thermal characterization of hybrid photovoltaic module for the conversion of sunlight into microwave in solar power satellite. 42nd Photovoltaic Specialist Conference (PVSC), 14-19 June, 2015, New Orleans, LA, USA. Piscataway: IEEE; 2015. [Link] [DOI:10.1109/PVSC.2015.7355860]
16. Sacchi E, Cassisa G, Gottero M. Solar power satellite thermal control approach. The 4th International Conference on Solar Power from Space-SPS '04, together with The 5th International Conference on Wireless Power Transmission-WPT 5 (ESA SP-567), 30 June-2 July, 2004, Granada, Spain. 2004. Auckland: ESA; 2004. [Link]
17. Han CY, You JH, Lee KH, Kim HK, Lee SN. Sensitivity analyses of satellite propulsion components with their thermal modelling. Advances in Space Research. 2011;47(3):466-479. [Link] [DOI:10.1016/j.asr.2010.09.018]
18. El-Nasr AA, El-Haggar SM. Effective thermal conductivity of heat pipes. Heat and Mass Transfer. 1996;32(1-2):97-101. [Link] [DOI:10.1007/s002310050097]
19. Hilbert R, Janiga G, Baron R, Thévenin D. Multi-objective shape optimization of a heat exchanger using parallel genetic algorithms. International Journal of Heat and Mass Transfer. 2006;49(15-16):2567-2577. [Link] [DOI:10.1016/j.ijheatmasstransfer.2005.12.015]
20. Yang H, Zhou W, Lu L, Fang Z. Optimal sizing method for stand-alone hybrid solar-wind system with LPSP technology by using genetic algorithm. Solar Energy. 2008;82(4):354-367. [Link] [DOI:10.1016/j.solener.2007.08.005]
21. Chen YM, Lee CH, Wu HC. Calculation of the optimum installation angle for fixed solar-cell panels based on the genetic algorithm and the simulated-annealing method. IEEE Transactions on Energy Conversion. 2005;20(2):467-473. [Link] [DOI:10.1109/TEC.2004.832093]
22. Liu Ch, Bu W, Xu D. Multi-objective shape optimization of a plate-fin heat exchanger using CFD and multi-objective genetic algorithm. International Journal of Heat and Mass Transfer. 2017;111:65-82. [Link] [DOI:10.1016/j.ijheatmasstransfer.2017.03.066]
23. Zhao M, Li Y. An effective layer pattern optimization model for multi-stream plate-fin heat exchanger using genetic algorithm. International Journal of Heat and Mass Transfer. 2013;60:480-489. [Link] [DOI:10.1016/j.ijheatmasstransfer.2012.12.041]
24. Hernández JJ, Gómez E, Grageda JI, Couder C, Solís A, Hanotel CL, et al. Evolving aerodynamic airfoils for wind turbines through a genetic algorithm. VIII International Congress of Engineering Physics, 7-11 November, 2016, Mérida, Yucatán, Mexico. Bristol: IOP Publishing; 2017. [Link] [DOI:10.1088/1742-6596/792/1/012079]

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.