Volume 19, Issue 2 (2019)                   Modares Mechanical Engineering 2019, 19(2): 491-504 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Mohammadpour O, Ahmadi R. Discrete Adaptive Sliding Mode Control of an Omnidirectional Mobile Robot Using Time Delay Control Method. Modares Mechanical Engineering. 2019; 19 (2) :491-504
URL: http://journals.modares.ac.ir/article-15-19155-en.html
1- Mechanical Engineering Department, Payame Noor University, Tehran, Iran , mohammadpour@pnu.ac.ir
Abstract:   (338 Views)

In this paper, a robust discrete control law is presented, using a time delay control method for an omnidirectional mobile robot in the presence of system uncertainties. Although time delay control method has attracted the great attention of researchers due to its structure simplicity, the major part of these research have been performed by the assumption of continuous time delay control and infinitesimal time delay that is in contradict of physical nature of digital devices, as implementation tools of time delay controllers, which have finite and specific sample time. Also, the discretization of continuous-time systems has been usually done by Euler estimation method, which has sufficient accuracy for infinitesimal sample times. So, in this paper, after modeling the robot, considering the dynamics of robot motors, a new method for more accurate discretization of continuous nonlinear systems is presented and, then, a robust discrete control law is designed, using the backstepping technique at the voltage level of the robot motors. In the design of control law, a new adaptive sliding mode method is used to overcome the system uncertainties and stability of the closed-loop system is proved by error convergence to a small neighborhood of zero. The proposed controller is designed in the discrete domain without the necessity of being known the bound of system uncertainties and simulation results represent the desired performance of the controller in trajectory tracking.

Full-Text [PDF 1213 kb]   (211 Downloads)    

Received: 2018/04/19 | Accepted: 2018/10/27 | Published: 2019/02/2

1. Baik IC, Kim KH, Youn MJ. Robust nonlinear speed control of PM synchronous motor using boundary layer integral sliding mode control technique. IEEE Transactions on Control Systems Technology. 2000;8(1):47-54. [Link] [DOI:10.1109/87.817691]
2. Bartolini G, Levant A, Pisano A, Usai E. Adaptive second-order sliding mode control with uncertainty compensation. International Journal of Control. 2016;89(9):1747-1758. [Link] [DOI:10.1080/00207179.2016.1142616]
3. Zhou F, Fisher DG. Continuous sliding mode control. International Journal of Control. 1992;55(2):313-327. [Link] [DOI:10.1080/00207179208934240]
4. Li H, Shi P, Yao D, Wu L. Observer-based adaptive sliding mode control for nonlinear Markovian jump systems. Automatica. 2016;64(C):133-142. [Link] [DOI:10.1016/j.automatica.2015.11.007]
5. Keymasi Khalaji A, Moosavian SAA. Design and implementation of a fuzzy sliding mode control law for a wheeled robot towing a trailer. Modares Mechanical Engineering. 2014;14(4):91-98. [Persian] [Link]
6. Sun T, Pei H, Pan Y, Zhou H, Zhang C. Neural network-based sliding mode adaptive control for robot manipulators. Neurocomputing. 2011;74(14-15):2377-2384. [Link] [DOI:10.1016/j.neucom.2011.03.015]
7. Baek J, Jin M, Han S. A new adaptive sliding-mode control scheme for application to robot manipulators. IEEE Transactions on Industrial Electronics. 2016;63(6):3628-3637. [Link] [DOI:10.1109/TIE.2016.2522386]
8. Hsia TCS. A new technique for robust control of servo systems. IEEE Transactions on Industrial Electronics. 1989;36(1):1-7. [Link] [DOI:10.1109/41.20338]
9. Youcef-Toumi K, Wu S-T. Input/output linearization using time delay control. Journal of dynamic systems, measurement, and control. 1992;114(1):10-19. [Link] [DOI:10.1115/1.2896491]
10. Youcef-Toumi K, Ito O. A time delay controller for systems with unknown dynamics. Journal of Dynamic Systems Measurement and Control. 1990;112(1):133-142. [Link] [DOI:10.1115/1.2894130]
11. Hsia TCS, Lasky TA, Guo Z. Robust independent joint controller design for industrial robot manipulators. IEEE Transactions on Industrial Electronics. 1991;38(1):21-25. [Link] [DOI:10.1109/41.103479]
12. Kali Y, Saad M, Benjelloun K, Fatemi A. Discrete-time second order sliding mode with time delay control for uncertain robot manipulators. Robotics and Autonomous Systems. 2017;94:53-60. [Link] [DOI:10.1016/j.robot.2017.04.010]
13. Chang PH, Lee SJ. A straight-line motion tracking control of hydraulic excavator system. Mechatronics. 2002;12(1):119-138. [Link] [DOI:10.1016/S0957-4158(01)00014-9]
14. Chang PH, Park SH, Lee JH. A reduced order time-delay control for highly simplified brushless DC motor. Journal of Dynamic Systems Measurement and Control. 1999;121(3):556-560. [Link] [DOI:10.1115/1.2802514]
15. Kim KH, Youn MJ. A simple and robust digital current control technique of a PM synchronous motor using time delay control approach. IEEE Transactions on Power Electronics. 2001;16(1):72-82. [Link] [DOI:10.1109/63.903991]
16. Wang YX, Yu DH, Kim YB. Robust time-delay control for the DC-DC boost converter. IEEE Transactions on Industrial Electronics. 2014;61(9):4829-4837. [Link] [DOI:10.1109/TIE.2013.2290764]
17. Jung JH, Chang PH, Stefanov D. Discretisation method and stability criteria for non-linear systems under discrete-time time delay control. IET Control Theory and Applications. 2011;5(11):1264-1276. [Link] [DOI:10.1049/iet-cta.2010.0181]
18. Youcef-Toumi K, Reddy S. Analysis of linear time invariant systems with time delay. Journal of dynamic systems, measurement, and control. 1992;114(4):544-555. [Link] [DOI:10.1115/1.2897722]
19. Lee J, Medrano-Cerda GA, Jung JH. Corrections for discretisation method and stability criteria for non-linear systems under discrete-time time delay control. IET Control Theory and Applications. 2016;10(14):1751-1754. [Link] [DOI:10.1049/iet-cta.2015.1124]
20. Watanabe K, Shiraishi Y, Tzafestas SG, Tang J, Fukuda T. Feedback control of an omnidirectional autonomous platform for mobile service robots. Journal of Intelligent and Robotic Systems. 1998;22(3-4):315-330. [Link] [DOI:10.1023/A:1008048307352]
21. Mazare M, Ghanbari P, Kazemi MG, Najafi MR. Dynamic modeling and optimal adaptive robust control of an omni directional mobile robot using harmony search. Modares Mechanical Engineering. 2017;17(8):191-200. [Persian] [Link]
22. Huang JT, Van Hung T, Tseng ML. Smooth switching robust adaptive control for omnidirectional mobile robots. IEEE Transactions on Control Systems Technology. 2015;23(5):1986-1993. [Link] [DOI:10.1109/TCST.2015.2388734]
23. Abidi K, Xu JX. Advanced discrete-time control: Designs and applications. 1st Edition. Singapore: Springer; 2015. [Link] [DOI:10.1007/978-981-287-478-8]
24. Seatzu C, Silva M, Van Schuppen JH, Editors. Control of discrete-event systems: Automata and petri net perspectives. 1st Edition. London: Springer; 2013. [Link] [DOI:10.1007/978-1-4471-4276-8]
25. Hashemi E, Jadidi MG, Jadidi NG. Model-based PI–fuzzy control of four-wheeled omni-directional mobile robots. Robotics and Autonomous Systems. 2011;59(11):930-942. [Link] [DOI:10.1016/j.robot.2011.07.002]
26. Treesatayapun C. A discrete-time stable controller for an omni-directional mobile robot based on an approximated model. Control Engineering Practice. 2011;19(2):194-203. [Link] [DOI:10.1016/j.conengprac.2010.11.008]
27. Velasco-Villa M, Alvarez-Aguirre A, Rivera-Zago G. Discrete-time control of an omnidireccional mobile robot subject to transport delay. Proceeding of American Control Conference, 9-13 July, 2007, New York, NY, USA. Piscataway: IEEE; 2007. pp. 2171-2176. [Link]
28. Jamali P, Tabatabaei SM, Sohrabi O, Seifipour N. Software based modeling, simulation and fuzzy control of a Mecanum wheeled mobile robot. Proceeding of First RSI/ISM International Conference on Robotics and Mechatronics, 13-15 Feb, 2013, Tehran, Iran. Piscataway: IEEE; 2013. pp. 200-204. [Persian] [Link]
29. Barreto S JCL, Conceição AGS, Dórea CET, Martinez L, De Pieri ER. Design and implementation of model-predictive control with friction compensation on an omnidirectional mobile robot. IEEE/ASME Transactions on Mechatronics. 2014;19(2):467-476. [Link] [DOI:10.1109/TMECH.2013.2243161]
30. Bingulac S, Vanlandingham HF. Discretization and continualization of MIMO systems. IFAC Proceedings Volumes. 1993;26(2):625-628. [Link] [DOI:10.1016/S1474-6670(17)49202-0]
31. Baruh H. Analytical dynamics. Pennsylvania: McGraw-Hill; 1999. [Link]
32. Jankowski K. Dynamics of double pendulum with parametric vertical excitation [Dissertation]. Lodz: Technical University of Lodz; 2011. [Link]
33. Sarpturk S, Istefanopulos Y, Kaynak O. On the stability of discrete-time sliding mode control systems. IEEE Transactions on Automatic Control. 1987;32(10):930-932. [Link] [DOI:10.1109/TAC.1987.1104468]
34. Xu JX, Cao WJ. Synthesized sliding mode and time-delay control for a class of uncertain systems. Automatica. 2000;36(12):1909-1914. https://doi.org/10.1016/S0005-1098(00)00110-2 [https://www.sciencedirect.com/science/article/pii/S0005109800001102] [DOI:10.5555/S0005-1098(00)00110-2]

Add your comments about this article : Your username or Email:

Send email to the article author