Volume 19, Issue 2 (2019)                   Modares Mechanical Engineering 2019, 19(2): 467-474 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Jabbari M. Electric Response of Piezoelectric Nonlinear Beam with the Harmonic Base Excitation and Change Concentrated Mass. Modares Mechanical Engineering. 2019; 19 (2) :467-474
URL: http://journals.modares.ac.ir/article-15-19266-en.html
Mechanical Engineering Department, Khomeinishahr Branch, Islamic Azad University, Khomeinishahr, Iran , jabbari@iaukhsh.ac.ir
Abstract:   (513 Views)
The structural vibrations are the important sources of the energy harvesting, which can be produced from the harmonic excitation. The piezoelectric structure behavior is simulated by the electromechanical coupling. The flexible beam has the large strain. The results of linear theories are not proper. The large strains effect on the results response and the nonlinear behavior must be considered. The Newmark method is used to solve the equations of motion and coupled equations. Regarding the type of proportional damping, the nonlinear hardness effect is also applied to the damping calculation. This paper presents the electric response of the piezoelectric nonlinear beam with the harmonic base excitation by the numerical and experimental methods. The program of finite elements is developed for the numerical results and the electric response is obtained. The theories results are verified by the results of experimental. The experimental results are used for the piezoelectric bimorph beam with the change of concentrated mass position. The effect of piezoelectric property in the frequency response of nonlinear beam is presented. The results show the effect of piezoelectric properties on the frequency response of the nonlinear beam and the effect of the concentrated mass position on the output voltage, and the most suitable position of the concentrated mass position is presented to obtain the highest voltage response.
Full-Text [PDF 537 kb]   (253 Downloads)    

Received: 2018/04/22 | Accepted: 2018/11/3 | Published: 2019/02/2

1. Roundy S, Wright PK. A piezoelectric vibration based generator for wireless electronics. Smart Materials and Structures. 2004;13(1):1131-1144. [Link] [DOI:10.1088/0964-1726/13/5/018]
2. duToit NE, Wardle BL, Kim S. Design considerations for MEMS-Scale piezoelectric mechanical vibration energy harvesters. Integrated Ferroelectrics. 2005;71(1):121-160. [Link] [DOI:10.1080/10584580590964574]
3. Sodano HA, Park G, Inman DJ. Estimation of electric charge output for piezoelectric energy harvesting. Strain. 2004;40(1):49-58. [Link] [DOI:10.1111/j.1475-1305.2004.00120.x]
4. Goldschmidtboeing F, Woias P. Characterization of different beam shapes for piezoelectric energy harvesting. Journal of Micromechanics and Microengineering. 2008;18(10):104013. [Link] [DOI:10.1088/0960-1317/18/10/104013]
5. Zheng B, Chang CJ, Gea HC. Topology optimization of energy harvesting devices using piezoelectric materials. Structural and Multidisciplinary Optimization. 2009;38(1):17-23. [Link] [DOI:10.1007/s00158-008-0265-0]
6. Silva ECN. Comment on topology optimization of energy harvesting devices using piezoelectric materials, Structural and Multidisciplinary Optimization. 2009;39(3):337-338. [Link] [DOI:10.1007/s00158-009-0364-6]
7. Erturk A, Inman DJ. Issues in mathematical modeling of piezoelectric energy harvesters. Smart Materials and Structures. 2008;17(6):065016. [Link] [DOI:10.1088/0964-1726/17/6/065016]
8. Tadesse Y, Zhang S, Priya S. Multimodal energy harvesting system: Piezoelectric and electromagnetic. Journal of Intelligent Material Systems and Structures. 2009;20(5):625-632. [Link] [DOI:10.1177/1045389X08099965]
9. Ottman GK, Hofmann HF, Bhatt AC, Lesieutre GA. Adaptive piezoelectric energy harvesting circuit for wireless remote power supply. IEEE Transactions on Power Electronics. 2002;17(5):669-676. [Link] [DOI:10.1109/TPEL.2002.802194]
10. Meninger S, Mur-Miranda JO, Amirtharajah R, Chan-Drakasan A, Lang JH, Mit C. Vibration-to-electric energy conversion. IEEE Transactions on Very Large Scale Integration (VLSI) Systems. 2001;9(1):64-76. [Link] [DOI:10.1109/92.920820]
11. Guan MJ, Liao WH. On the efficiencies of piezoelectric energy harvesting circuits towards storage device voltages. Smart Materials and Structures. 2007;16(2):498-505. [Link] [DOI:10.1088/0964-1726/16/2/031]
12. Rupp CJ, Evgrafov A, Maute K, Dunn ML. Design of piezoelectric energy harvesting systems: A topology optimization approach based on multilayer plates and shells. Journal of Intelligent Material Systems and Structures. 2009;20(16):1923-1939. [Link] [DOI:10.1177/1045389X09341200]
13. Lee S, Youn BD, Giraud M. Designing energy harvesting skin structure utilizing outdoor unit vibration. ASME 2010 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Montreal, Canada: Design Engineering Division and Computers in Engineering Division; 2010. Paper No. DETC2010-29180, pp. 713-723. [Link] [DOI:10.1115/DETC2010-29180]
14. Lee S, Youn BD. A new piezoelectric energy harvesting design concept: Multimodal energy harvesting skin. IEEE Transactions on UltrasonIcs. 2011;58(3):629-645. [Link] [DOI:10.1109/TUFFC.2011.5733266]
15. Cottone F, Mincigrucci R, Neri I, Orfei F, Travasso F, Vocca H, et al. Nonlinear kinetic energy harvesting. The European Future Technologies Conference and Exhibition 2011. Procedia Computer Science. 2011;7:190-191. [Link] [DOI:10.1016/j.procs.2011.09.048]
16. Ibrahim SW, Ali WG. Power enhancement for piezoelectric energy harvester. Proceedings of the World Congress on Engineering 2012 Vol II. London: International Association of Engineers; 2012. [Link]
17. Jabbari M. The effect of strain nodes on the energy harvesting of the cantilever piezoelectric beam with the vibration mode excitation. Modares Mechanical Engineering. 2017;17(10):65-72. [Persian] [Link]
18. Aligholizadeh S, Hamed MA, Hassannejad Qadim R. Active vibration control of the clamped beam with length and location optimized piezoelectric patches. Modares Mechanical Engineering. 2015;15(9):11-22. [Persian] [Link]
19. Kaghazian A, Foruzande H, Hajnayeb A, Mohammad Sedighi H. Nonlinear free vibrations analysis of a piezoelectric bimorph nano actuator using nonlocal elasticity theory. Modares Mechanical Engineering. 2016;16(4):55-66. [Persian] [Link]
20. Jabbari M, Ghayour M, Mirdamadi HR. Dynamics analysis of the steady and transient states of a nonlinear piezoelectric beam by a finite element method. Journal of Solid Mechanics. 2016;8(2):247-261. [Link]
21. Jabbari M, Ghayour M, Mirdamadi HR. Experimental and numerical results of Dynamics behavior of a nonlinear piezoelectric beam. Mechanics of Advanced Materials and Structures. 2015;23(8):853-864. [Link] [DOI:10.1080/15376494.2015.1029173]
22. Clough RW, Penzien J. Dynamics of Structures. New York City: McGraw-Hill; 1993. [Link]
23. Jabbari M, Ghayour M, Mirdamadi HR. Energy harvesting of a multilayer piezoelectric beam in resonance and off-resonance cases. Journal of Engineering Materials and Technology. 2017;139(3):031008. [Link] [DOI:10.1115/1.4036241]

Add your comments about this article : Your username or Email:

Send email to the article author