Volume 19, Issue 3 (March 2019)                   Modares Mechanical Engineering 2019, 19(3): 559-567 | Back to browse issues page

XML Persian Abstract Print


1- Mechanical Engineering School, Tehran University, Tehran, Iran
2- Mechanical Engineering School, Tehran University, Tehran, Iran , reza.rahimian@ut.ac.ir
Abstract:   (8343 Views)
Total Hip Arthroplasty (THA) is one of the most successful orthopedic surgeries, which is advised by the specialist in cases which osteoarthritis worsens in the hip joint. In the long run, functionality of THA may be subject to problems such as wear, loosening, and displacement. Structural and mechanical mismatches of artificial joint with the patient's natural joint after THA leads to the changes stress distribution pattern on the bones in a way that the majority of the load is on the artificial joint and a small percentage is implemented on the patient’s bone; in the long run, it reduces bone density and leads to loosening and displacement. One of the most important factors determining the stress distribution in the bone and prosthesis is the acetabularcup inclination in the acetabulum socket. In this study, a 24-year-old patient, who had been injured in the hip joint, is studied and the effect of the inclination angle on stress distribution in the acetabulum and acetabularcup is assessed. First, a 3D model of the patient’s bone is obtained, using CT-scan imaging and its mechanical properties are found. Gait analysis is carried out on the patient and the movement pattern and muscle forces in a gait cycle are found, using OpenSim software. The hip prosthesis is designed and the mechanical analysis of the joint is carried out, using ABAQUS finite element software, and the appropriate inclination angle for the acetabularcup for this patient is derived. The results show that the acetabularcup implantation in 45 degrees of inclination leads to better prosthesis functionality and a longer life.
 
 
Full-Text [PDF 1044 kb]   (3064 Downloads)    
Article Type: Original Research | Subject: Biomechanics
Received: 2018/04/23 | Accepted: 2018/10/27 | Published: 2019/03/1

References
1. Van Houcke J, Khanduja V, Pattyn Ch, Audenaert E. The history of biomechanics in total hip arthroplasty. Indian Journal of Orthopaedics. 2017;51(4):359-367. [Link] [DOI:10.4103/ortho.IJOrtho_280_17]
2. Qvistgaard E, Christensen R, Torp-Pedersen S, Bliddal H. Intra-articular treatment of hip osteoarthritis: A randomized trial of hyaluronic acid, corticosteroid, and isotonic saline. Osteoarthritis and Cartilage. 2006;14(2):163-170. [Link] [DOI:10.1016/j.joca.2005.09.007]
3. Nordin M, Frankel VH. Basic biomechanics of the musculoskeletal system. 3rd Edition. Philadelphia: Lippincott Williams & Wilkins; 2001. [Link]
4. Yoshida H, Faust A, Wilckens J, Kitagawa M, Fetto J, Chao EY. Three-dimensional dynamic hip contact area and pressure distribution during activities of daily living. Journal of Biomechanics. 2006;39(11):1996-2004. [Link] [DOI:10.1016/j.jbiomech.2005.06.026]
5. Munting E, Verhelpen M. Fixation and effect on bone strain pattern of a stemless hip prosthesis. Journal of Biomechanics. 1995;28(8):953-961. [Link] [DOI:10.1016/0021-9290(94)00146-U]
6. Abdul-Kadir MR, Hansen U, Klabunde R, Lucas D, Amis A. Finite element modelling of primary hip stem stability: The effect of interference fit. Journal of Biomechanics. 2008;41(3):587-594. [Link] [DOI:10.1016/j.jbiomech.2007.10.009]
7. Korduba LA, Essner A, Pivec R, Lancin P, Mont MA, Wang A, et al. Effect of acetabular cup abduction angle on wear of ultrahigh-molecular-weight polyethylene in hip simulator testing. The American Journal of Orthopedics. 2014;43(10):466-471. [Link]
8. Wan Z, Boutary M, Dorr LD. The influence of acetabular component position on wear in total hip arthroplasty. The Journal of Arthroplasty. 2008;23(1):51-56. [Link] [DOI:10.1016/j.arth.2007.06.008]
9. Scheerlinck T. Cup positioning in total hip arthroplasty. Acta Orthopaedica Belgica. 2014;80(3):336-347. [Link]
10. Daniel M, Iglič A, Kralj-Iglič V. Hip contact stress during normal and staircase walking: The influence of acetabular anteversion angle and lateral coverage of the acetabulum. Journal of Applied Biomechanics. 2008;24(1):88-93. [Link] [DOI:10.1123/jab.24.1.88]
11. Oladeji Bolarinwa G, Kumar Singh N, Kumar Rai S. Development of elastic modulus-density chart for a typical femur bone model. International Journal for Research in Applied Science and Engineering Technology. 2015;3(IX):352-358. [Link]
12. Morgan EF, Bayraktar HH, Keaveny TM. Trabecular bone modulus-density relationships depend on anatomic site. Journal of Biomechanics. 2003;36(7):897-904. [Link] [DOI:10.1016/S0021-9290(03)00071-X]
13. Cappozzo A, Catani F, Della Croce U, Leardini A. Position and orientation in space of bones during movement: Anatomical frame definition and determination. Clinical Biomechanics. 1995;10(4):171-178. [Link] [DOI:10.1016/0268-0033(95)91394-T]
14. Delp SL, Anderson FC, Arnold AS, Loan P, Habib A, John CT, et al. OpenSim: Open-source software to create and analyze dynamic simulations of movement. IEEE Transactions on Biomedical Engineering. 2007;54(11):1940-1950. [Link] [DOI:10.1109/TBME.2007.901024]
15. Seth A, Sherman M, Reinbolt JA, Delp SL. OpenSim: A musculoskeletal modeling and simulation framework for in silico investigations and exchange. Procedia Iutam. 2011;2:212-232. [Link] [DOI:10.1016/j.piutam.2011.04.021]
16. Navarro M, Michiardi A, Castano O, Planell JA. Biomaterials in orthopaedics. Journal of the Royal Society Interface. 2008;5(27):1137-1158. [Link] [DOI:10.1098/rsif.2008.0151]
17. CeramTec. Increased Fracture Strength and Excellent Wear Properties BIOLOX® delta [Internet]. Plochingen: CeramTec; 2008 [cited 2017 Jun 01]. Available from: https://www.ceramtec.com/ceramic-materials/biolox/delta/ [Link]
18. Fang L, Leng Y, Gao P. Processing and mechanical properties of HA/UHMWPE nanocomposites. Biomaterials. 2006;27(20):3701-3707. [Link] [DOI:10.1016/j.biomaterials.2006.02.023]
19. Joshi MG, Advani SG, Miller F, Santare MH. Analysis of a femoral hip prosthesis designed to reduce stress shielding. Journal of Biomechanics. 2000;33(12):1655-1662. [Link] [DOI:10.1016/S0021-9290(00)00110-X]
20. Lewinnek GE, Lewis JL, Tarr R, Compere CL, Zimmerman JR. Dislocations after total hip-replacement arthroplasties. The Journal of Bone and Joint Surgery American Volume. 1978;60(2):217-220. [Link] [DOI:10.2106/00004623-197860020-00014]
21. Ng VY, Mcshane MA. Understanding acetabular cup orientation: The importance of convention and defining the safe zone. Hip International. 2011;21(6):646-652. [Link] [DOI:10.5301/HIP.2011.8858]
22. Bhaskar D, Rajpura A, Board T. Current concepts in acetabular positioning in total hip arthroplasty. Indian Journal of Orthopaedics. 2017;51(4):386-396. [Link] [DOI:10.4103/ortho.IJOrtho_144_17]
23. Harrison CL, Thomson AI, Cutts S, Rowe PJ, Riches PE. Research synthesis of recommended acetabular cup orientations for total hip arthroplasty. The Journal of Arthroplasty. 2014;29(2):377-382. [Link] [DOI:10.1016/j.arth.2013.06.026]
24. Danoff JR, Bobman JT, Cunn G, Murtaugh T, Gorroochurn P, Geller JA, et al. Redefining the acetabular component safe zone for posterior approach total hip arthroplasty. The Journal of Arthroplasty. 2016;31(2):506-511. [Link] [DOI:10.1016/j.arth.2015.09.010]
25. Eberle R, Murphy W, Kowal JH, Murphy S. The safe zone for acetabular orientation in hip arthroplasty. The Bone and Joint Journal. 2016;98-B(Supp 3):70-72. [Link]

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.