Volume 19, Issue 2 (2019)                   Modares Mechanical Engineering 2019, 19(2): 483-490 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Zareei S, Jamshidian M, Sepehrirahnama S, Ziaei-Rad S. Three-Dimensional Finite Element Modeling of Particle Motion under the Influence of Acoustic Radiation Force in Microchannel. Modares Mechanical Engineering. 2019; 19 (2) :483-490
URL: http://journals.modares.ac.ir/article-15-19494-en.html
1- Mechanical Engineering Faculty, Isfahan University of Technology, Isfahan, Iran
2- Mechanical Engineering Faculty, Isfahan University of Technology, Isfahan, Iran , jamshidian@cc.iut.ac.ir
3- Department of Mechanical Engineering, National University of Singapore
Abstract:   (550 Views)
Acoustofluidics, the study of acoustics in microfluidic systems, is the basis for analyzing many laboratory applications including the separation of particles, particle sorting, cleaning, and mixing multiphase systems. In this research, a three-dimensional finite element model for particle motion under acoustic radiation force in acoustic microchannels is developed and the interaction of the incident waves with a suspended particle in microchannel is investigated. Using finite element method, the first-order fields due to an applied standing wave are initially calculated and, then, the acoustic radiation force is directly calculated from the second-order perturbation equations. The simulation results for radiation force are first verified against the analytical solution in the Rayleigh limit and, then, examined beyond this limit, for which there is no explicit analytical solution. In addition, the quasi-static motion of a particle under the influence of an applied acoustic standing wave in microchannel is simulated. For simulating particle motion, the acoustic stress on particle surface is calculated and transferred as an input to the laminar flow equations. Then, the drag force is estimated based on the shear stress due to the flow around the particle. The simulation results demonstrate that the particle velocity depends on its position with respect to the wave node at the center of the microchannel. As the particle approaches to the center of microchannel, its velocity decreases until it stops at the center of microchannel.
Full-Text [PDF 945 kb]   (288 Downloads)    

Received: 2018/04/27 | Accepted: 2018/10/31 | Published: 2019/02/2

1. Ankrett DN, Carugo D, Lei J, Glynne-Jones P, Townsend PA, Zhang X, et al. The effect of ultrasound-related stimuli on cell viability in microfluidic channels. Journal of Nanobiotechnology. 2013;11(1):20. [Link] [DOI:10.1186/1477-3155-11-20]
2. Doinikov AA. Acoustic radiation forces: Classical theory and recent advances. In: Recent research developments in acoustics Vol. 1, Chapter: 3. Kerala, India: Transworld Research Network; 2003. pp. 39-67. [Link]
3. Laurell T, Petersson F, Nilsson A. Chip integrated strategies for acoustic separation and manipulation of cells and particles. Chemical Society Reviews. 2007;36(3):492-506. [Link] [DOI:10.1039/B601326K]
4. Lenshof A, Laurell T. Continuous separation of cells and particles in microfluidic systems. Chemical Society Reviews. 2010;39(3):1203-1217. [Link] [DOI:10.1039/b915999c]
5. Petersson F, Nilsson A, Holm C, Jönsson H, Laurell T. Continuous separation of lipid particles from erythrocytes by means of laminar flow and acoustic standing wave forces. Lab on a Chip. 2005;5(1):20-22. [Link] [DOI:10.1039/B405748C]
6. Nilsson A, Petersson F, Jönsson H, Laurell T. Acoustic control of suspended particles in micro fluidic chips. Lab on a Chip. 2004;4(2):131-135. [Link] [DOI:10.1039/B313493H]
7. Lenshof A, Magnusson C, Laurell T. Acoustofluidics 8: Applications of acoustophoresis in continuous flow microsystems. Lab on a Chip. 2012;12(7):1210-1223. [Link] [DOI:10.1039/c2lc21256k]
8. Evander M, Nilsson J. Acoustofluidics 20: Applications in acoustic trapping. Lab on a Chip. 2012;12(22):4667-4676. [Link] [DOI:10.1039/c2lc40999b]
9. Doinikov AA. Acoustic radiation pressure on a rigid sphere in a viscous fluid. Proceedings of the Royal Society A. 1994;447(1931):447-466. [Link] [DOI:10.1098/rspa.1994.0150]
10. Rayleigh L. XXXIV. on the pressure of vibrations. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science. 1902;3(15):338-346. [Link] [DOI:10.1080/14786440209462769]
11. King LV. On the acoustic radiation pressure on spheres. Proceedings of the Royal Society A. 1934;147(861):212-240. . [Link] [DOI:10.1098/rspa.1934.0215]
12. Embleton TFW. Mean force on a sphere in a spherical sound field. I. (Theoretical). The Journal of the Acoustical Society of America. 1954;26(1):40-45. https://doi.org/10.1121/1.1907286 https://doi.org/10.1121/1.1907287 [Link] [DOI:10.1121/1.1917750]
13. Yosioka K, Kawasima Y. Acoustic radiation pressure on a compressible sphere. Acta Acustica United with Acustica. 1995;5(3):167-173. [Link]
14. Gor'Kov L. On the forces acting on a small particle in an acoustical field in an ideal fluid. Soviet Physics, Doklady. 1962;6:773-775. [Link]
15. Barmatz M, Collas P. Acoustic radiation potential on a sphere in plane, cylindrical, and spherical standing wave fields. The Journal of the Acoustical Society of America. 1985;77(3):928-945. [Link] [DOI:10.1121/1.392061]
16. Hasegawa T, Yosioka K. Acoustic-radiation force on a solid elastic sphere. The Journal of the Acoustical Society of America. 1969;46(5B):1139-1143. [Link] [DOI:10.1121/1.1911832]
17. Gröschl M. Ultrasonic separation of suspended particles-part I: Fundamentals. Acta Acustica United with Acustica. 1998;84(3):432-447. [Link]
18. Hill M, Townsend RJ, Harris NR. Modelling for the robust design of layered resonators for ultrasonic particle manipulation. Ultrasonics. 2008;48(6-7):521-528. [Link] [DOI:10.1016/j.ultras.2008.06.007]
19. Fisher KA, Miles R. Modeling the acoustic radiation force in microfluidic chambers. The Journal of the Acoustical Society of America. 2008;123(4):1862-1865. [Link] [DOI:10.1121/1.2839140]
20. Haydock D. Lattice boltzmann simulations of the time-averaged forces on a cylinder in a sound field, Journal of Physics A: Mathematical and General. 2005;38(15):32-65. [Link] [DOI:10.1088/0305-4470/38/15/003]
21. Cai F, Meng L, Jiang C, Pan Y, Zheng H. Computation of the acoustic radiation force using the finite-difference time-domain method. The Journal of the Acoustical Society of America. 2010;128(4):1617-1622. [Link] [DOI:10.1121/1.3474896]
22. Glynne-Jones P, Mishra PP, Boltryk RJ, Hill M. Efficient finite element modeling of radiation forces on elastic particles of arbitrary size and geometry. The Journal of the Acoustical Society of America. 2013;133(4):1885-1893. [Link] [DOI:10.1121/1.4794393]
23. Silva GT, Bruus H. Acoustic interaction forces between small particles in an ideal fluid. Physical Review E. 2014;90(6):063007. [Link] [DOI:10.1103/PhysRevE.90.063007]
24. Bruus H. Acoustofluidics 1: Governing equations in microfluidics. Lab on a Chip. 2011;11(22):3742-3751. [Link] [DOI:10.1039/c1lc20658c]
25. Bruus H. Acoustofluidics 7: The acoustic radiation force on small particles. Lab on a Chip. 2012;12(6):1014-1021. [Link] [DOI:10.1039/c2lc21068a]

Add your comments about this article : Your username or Email:

Send email to the article author