Volume 19, Issue 4 (2019)                   Modares Mechanical Engineering 2019, 19(4): 919-925 | Back to browse issues page

XML Persian Abstract Print


1- Mechanical Engineering Department, Engineering Faculty, University of Maragheh, Maragheh, Iran , f.pashmforoush@maragheh.ac.ir
2- Manufacturing Engineering Department, Mechanical Engineering Faculty, Amirkabir University of Technology, Tehran, Iran
Abstract:   (732 Views)

In sheet metal forming processes, one of the most important limitations relates to the elastic recovery after punch unloading, which usually leads to spring-back phenomenon. Production of precise parts without spring-back controlling is not possible. Hence, the main aim of the present research is to minimize the amount of spring-back as well as to prevent the crack initiation during bending process of Aluminum A1050-H14 sheet. For this purpose, firstly, the sheet metal bending process was numerically simulated in ABAQUS finite element package. Then, the effect of friction coefficient and punch velocity was investigated on elastic recovery and von Mises stress in order to minimize the spring-back as well as to prevent the crack initiation. In this regard, python programming language was utilized. Then, by linking multi-objective genetic algorithm and finite element method in modeFRONTIER software, the optimum values of the process parameters were determined. It should be mentioned that for validation purposes, the simulation results of the present study were compared with the experimental data available in literature, showing a 3.14% relative error between the numerical and experimental results.
 

Full-Text [PDF 517 kb]   (296 Downloads)    

Received: 2018/04/29 | Accepted: 2018/11/18 | Published: 2019/04/6

References
1. Nasaeri R, Kadkhodayan M, Shariati M. The investigation of springback of UFG commercially pure titanium in three-point bending test. Modares Mechanical Engineering. 2017;16(11):266-276. [Persian] [Link]
2. Xu Z, Peng L, Bao E. Size effect affected springback in micro/meso scale bending process: Experiments and numerical modeling. Journal of Materials Processing Technology. 2018;252:407-420. [Link] [DOI:10.1016/j.jmatprotec.2017.08.040]
3. Binesh B, Aghaie-Khafri M, Daneshi M. Simulation and experimental study of severe plastic deformation of 7075 Al alloy processed by repetitive upsetting-extrusion. Modares Mechanical Engineering. 2017;17(8):323-332. [Persian] [Link]
4. Zhang YB, Lu LT, Zou L, Zeng DF, Zhang JW. Finite element simulation of the influence of fretting wear on fretting crack initiation in press-fitted shaft under rotating bending. Wear. 2018;400-401:177-183. [Link] [DOI:10.1016/j.wear.2018.01.008]
5. Ling YE, Lee HP, Cheok BT. Finite element analysis of springback in L-bending of sheet metal. Journal of Materials Processing Technology. 2005;168(2):296-302. [Link] [DOI:10.1016/j.jmatprotec.2005.02.236]
6. Phanitwong W, Thipprakmas S. Development of anew spring-back factor for a wiping die bending process. Materials and Design. 2016;89:749-758. [Link] [DOI:10.1016/j.matdes.2015.10.031]
7. Kumar KD, Appukuttan KK, Neelakantha VL, Naik PS. Experimental determination of spring back and thinning effect of aluminum sheet metal during L-bending operation. Materials and Design (1980-2015). 2014;56:613-619. [Link] [DOI:10.1016/j.matdes.2013.11.047]
8. Mkaddem A, Saidane D. Experimental approach and RSM procedure on the examination of springback in wiping-die bending processes. Journal of Materials Processing Technology. 2007;189(1-3):325-333. [Link] [DOI:10.1016/j.jmatprotec.2007.02.004]
9. Kazan R, Fırat M, Tiryaki AE. Prediction of springback in wipe-bending process of sheet metal using neural network. Materials and Design. 2009;30(2):418-423. [Link] [DOI:10.1016/j.matdes.2008.05.033]
10. Ghaei A, Green DE, Aryanpour A. Springback simulation of advanced high strength steels considering nonlinear elastic unloading-reloading behavior. Materials and Design. 2015;88:461-470. [Link] [DOI:10.1016/j.matdes.2015.09.012]
11. Gassara F, Hambli R, Bouraoui T, El Halouani F, Soulat D. Optimization of springback in L-bending process using a coupled Abaqus/Python algorithm. The International Journal of Advanced Manufacturing Technology. 2009;44(1-2):61-67. [Link] [DOI:10.1007/s00170-008-1819-4]
12. Kuo CC, Lin BT. Optimization of springback for AZ31 magnesium alloy sheets in the L-bending process based on the Taguchi method. The International Journal of Advanced Manufacturing Technology. 2012;58(1-4):161-173. [Link] [DOI:10.1007/s00170-011-3373-8]
13. Li B, McClelland Z, Horstemeyer SJ, Aslam I, Wang PT, Horstemeyer MF. Time dependent springback of a magnesium alloy. Materials and Design. 2015;66(Part B):575-580. [Link]
14. Zhou D, Wagoner RH. Development and application of sheet-forming simulation. Journal of Materials Processing Technology. 1995;50(1-4):1-16. [Link] [DOI:10.1016/0924-0136(94)01366-9]
15. Pourboghrat F, Karabin ME, Becker RC, Chung K. A hybrid membrane/shell method for calculating springback of anisotropic sheet metals undergoing axisymmetric loading. International Journal of Plasticity. 2000;16(6):677-700. [Link] [DOI:10.1016/S0749-6419(99)00067-4]
16. Li GY, Tan MJ, Liew KM. Springback analysis for sheet forming processes by explicit finite element method in conjunction with the orthogonal regression analysis. International Journal of Solids and Structures. 1999;36(30):4653-4668. [Link] [DOI:10.1016/S0020-7683(98)00227-3]
17. Mertin Ch, Hirt G. Numerical and experimental investigations on the springback behaviour of stamping and bending parts. Procedia Engineering. 2017;207:1635-1640. [Link] [DOI:10.1016/j.proeng.2017.10.1091]
18. Sofuoğlu MA, Gürgen S, Çakır FH, Orak S. Springback behavior of AA6082T6 tubes in three-point bending operation. Procedia Engineering. 2017;182:658-664. [Link] [DOI:10.1016/j.proeng.2017.03.176]
19. Davis JR. Aluminum and aluminum alloys. 2nd Edition. Ohio: Metals Park; 1994. pp. 575-587. [Link]
20. Wei L, Yuying Y. Multi-objective optimization of sheet metal forming process using Pareto-based genetic algorithm. Journal of Materials Processing Technology. 2008;208(1-3):499-506. [Link] [DOI:10.1016/j.jmatprotec.2008.01.014]
21. Choi MK, Huh H. Effect of punch speed on amount of springback in U-bending process of auto-body steel sheets. Procedia Engineering. 2014;81:963-968. [Link] [DOI:10.1016/j.proeng.2014.10.125]
22. Hou Y, Min J, Lin J, Liu Z, Carsley JE, Stoughton TB. Springback prediction of sheet metals using improved material models. Procedia Engineering. 2017;207:173-178. [Link] [DOI:10.1016/j.proeng.2017.10.757]
23. Fathi H, Emadoddin E, Mohammadian Semnani HR, Mohammad Sadeghi B. Effect of punch speed on the formability behavior of austenitic stainless steel type 304L. Metals and Materials International. 2016;22(3):397-406. [Link] [DOI:10.1007/s12540-016-5495-x]
24. Saito N, Fukahori M, Hisano D, Hamasaki H, Yoshida F. Effects of temperature, forming speed and stress relaxation on springback in warm forming of high strength steel sheet. Procedia Engineering. 2017;207:2394-2398. [Link] [DOI:10.1016/j.proeng.2017.10.1014]
25. Panthi SK, Ramakrishnan N, Ahmed M, Singh SS, Goel MD. Finite element analysis of sheet metal bending process to predict the springback. Materials and Design. 2010;31(2):657-662. [Link] [DOI:10.1016/j.matdes.2009.08.022]
26. Phanitwong W, Thipprakmas S. FE-analysis of channel width effects on spring-back characteristics in the U-bending process. Procedia Engineering. 2017;183:17-22. [Link] [DOI:10.1016/j.proeng.2017.04.005]
27. Thipprakmas S, Boochakul U. Comparison of spring-back characteristics in symmetrical and asymmetrical U-bending processes. International Journal of Precision Engineering and Manufacturing. 2015;16(7):1441-1446. [Link] [DOI:10.1007/s12541-015-0190-2]
28. Malhotra R, Singh N, Singh Y. Genetic algorithms: Concepts, design for optimization of process controllers. Computer and Information Science. 2011;4(2):39-54. [Link] [DOI:10.5539/cis.v4n2p39]
29. Osaba E, Carballedo R, Diaz F, Onieva E, De La Iglesia I, Perallos A. Crossover versus mutation: A comparative analysis of the evolutionary strategy of genetic algorithms applied to combinatorial optimization problems. The Scientific World Journal. 2014;2014:154676. [Link]
30. Boyabatli O, Sabuncuoglu I. Parameter selection in genetic algorithms. Journal of Systemics, Cybernetics and Informatics. 2004;4(2):78-83. [Link]