Volume 19, Issue 9 (2019)                   Modares Mechanical Engineering 2019, 19(9): 2105-2110 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Ghaderi H, Ghasemi A, Rouhi S, Mahdavi E. Evaluation of the Heat Transfer Coefficient of Multi-walled Boron Nitride Nanotubes. Modares Mechanical Engineering. 2019; 19 (9) :2105-2110
URL: http://journals.modares.ac.ir/article-15-21278-en.html
1- Mechanical Engineering Department, Engineering Faculty, Langroud Branch, Islamic Azad University, Guilan, Iran
2- Mechanical Engineering Department, Engineering Faculty, North Tehran Branch, Islamic Azad University, Tehran, Iran , a.ghasemi@iau-tnb.ac.ir
3- Mechanical Engineering Department, Mechanical Engineering Faculty, Iran University of Science & Technology, Tehran, Iran
Abstract:   (399 Views)
In this paper, the thermal conductivity coefficient of multi-walled boron nitride nanotubes has been investigated, using molecular dynamics simulation based on the Tersoff and Lenard Jones potential functions. The effects of diameter, length, and temperature on the thermal conductivity of double-walled boron nitride nanotubes have been studied. Also, by considering the 2, 3, 4, and 5-wall nanotubes, the effect of number of walls on the thermal conductivity of boron nitride nanotubes were studied. Finally, by considering of zigzag and armchair nanotubes, the effect of chirality has been investigated. The results showed that the thermal conductivity coefficient of double-walled boron nitride nanotubes increases by increasing the diameter of nanotubes and decreases by increasing temperature. It had been demonstrated that with 73% and 82% increase in the outer diameter of nanotubes, the thermal conductivity increases 93% and 98%, respectively. Furthermore, regarding to the chirality, the armchair nanotubes have a higher thermal conductivity than the zigzag ones. Also, the simulation results showed that thermal conductivity coefficient increases by increasing the length of boron nitride nanotubes and 50% increase of effective nanotube length increases the thermal conductivity by 25% approximately. Finally, by studying the effect of the number of walls, it is concluded that in the same length and temperature, nanotubes with higher number of walls have higher thermal conductivity coefficient in comparison.
Full-Text [PDF 1122 kb]   (66 Downloads)    

Received: 2018/06/5 | Accepted: 2019/01/29 | Published: 2019/09/1

References
1. Shahil KMF, Balandin AA. Thermal properties of graphene and multilayer graphene: Applications in thermal interface materials. Solid State Communications. 2012;152(15):1331-1340. [Link] [DOI:10.1016/j.ssc.2012.04.034]
2. Zhou WX, Chen KQ. Enhancement of thermoelectric performance in β-graphyne nanoribbons by suppressing phononic thermal conductance. Carbon. 2015;85:24-27. [Link] [DOI:10.1016/j.carbon.2014.12.059]
3. Li C, Chou TW. Single-walled carbon nanotubes as ultrahigh frequency nanomechanical resonators. Physical Review B. 2003;68(7):073405. [Link] [DOI:10.1103/PhysRevB.68.073405]
4. Son KH, Hong JH, Lee JW. Carbon nanotubes as cancer therapeutic carriers and mediators. International Journal of Nanomedicine. 2016;11:5163-5185. [Link] [DOI:10.2147/IJN.S112660]
5. Fushen L, Fei W, C Li Kong, Yi C. Hexagonal boron nitride nanomaterials: advances towards bioapplications. Nanoscience and Nanotechnology Letters. 2012;4(10):949-961. [Link] [DOI:10.1166/nnl.2012.1444]
6. Ishigami M, Aloni Sh, Zettl A. Properties of boron nitride nanotubes. In: Koenraad PM, Kemerink M, Technische Universiteit Eindhoven. 12th international conference on scanning tunneling microscopy/spectroscopy and related techniques. Koenraad PM, Kemerink M, editors. College Park MD: American Institute of Physics; 2003. pp. 94-99. [Link]
7. Yang K, Gu M, Han H, Mu G. Influence of chemical processing on the morphology, crystalline content and thermal stability of multi-walled carbon nanotubes. Materials Chemistry and Physics. 2008;112(2);387-392. [Link] [DOI:10.1016/j.matchemphys.2008.05.085]
8. Chen Y, Zou J, Campbell SJ, Le Caer G. Boron nitride nanotubes: Pronounced resistance to oxidation. Applied Physics Letters. 2004;84(13):2430. [Link] [DOI:10.1063/1.1667278]
9. Jin HY, Xu H, Qiao GJ, Gao JQ, Jin ZH. Study of machinable silicon carbide-boron nitride ceramic composites. Materials Science and Engineering A. 2008;483-484:214-217. [Link] [DOI:10.1016/j.msea.2006.12.165]
10. Tang C, Bando Y, Liu C, Fan Sh, Zhang J, Ding X, et al. Thermal conductivity of nanostructured boron nitride materials. The Journal of Physical Chemistry B. 2006;110(21):10354-10357. [Link] [DOI:10.1021/jp0607014]
11. Mashreghi A. Thermal expansion/contraction of boron nitride nanotubes in axial, radial and circumferential directions. Computational Materials Science. 2012;65:356-364. [Link] [DOI:10.1016/j.commatsci.2012.08.007]
12. Zheng M, Ke C, Bae IT, Park C, Smith MW, Jordan K. Radial elasticity of multi-walled boron nitride nanotubes. Nanotechnology. 2012;23(9):095703. [Link] [DOI:10.1088/0957-4484/23/9/095703]
13. Xiao Y, Yan XH, Cao JX, Ding JW, Mao YL, Xiang J. Specific heat and quantized thermal conductance of single-walled boron nitride nanotubes. Physical Review B. 2004;69(20):205415. [Link] [DOI:10.1103/PhysRevB.69.205415]
14. Sun CQ, Bai HL, Tay BK, Li S, Jiang EY. Dimension, Strength, And Chemical And Thermal Stability Of A Single C-C Bond In Carbon Nanotubes. The Journal of Physical Chemistry B. 2003;107(31):7544-7546. [Link] [DOI:10.1021/jp035070h]
15. Wang J, Xie H, Xin Z, Li Y. Increasing the thermal conductivity of palmitic acid by the addition of carbon nanotubes. Carbon. 2010;48(14):3979-3986. [Link] [DOI:10.1016/j.carbon.2010.06.044]
16. Zhou T, Wang X, Liu X, Xiong D. Improved thermal conductivity of epoxy composites using a hybrid multi-walled carbon nanotube/micro-SiC filler. Carbon. 2010;48(4):1171-1176. [Link] [DOI:10.1016/j.carbon.2009.11.040]
17. Shen C, Brozena AH, Wang Y. Double-walled carbon nanotubes: Challenges and opportunities. Nanoscale. 2011;3(2):503-518. [Link] [DOI:10.1039/C0NR00620C]
18. Okada S, Oshiyama A. Curvature-induced metallization of double-walled semiconducting zigzag carbon nanotubes. Physical Review Letters. 2003;91(21):216801. [Link] [DOI:10.1103/PhysRevLett.91.216801]
19. Popov VN. Theoretical evidence for T1/2 specific heat behavior in carbon nanotube systems. Carbon. 2004;42(5-6):991-995. [Link] [DOI:10.1016/j.carbon.2003.12.014]
20. Verma V, Jindal VK, Dharamvir K. Elastic moduli of a boron nitride nanotube. Nanotechnology. 2007;18(43):435711. [Link] [DOI:10.1088/0957-4484/18/43/435711]
21. Deuflhard P, Hermans J, Leimkuhler B, Mark AE, Reich S, Skeel RD, editors. Computational molecular dynamics: Challenges, methods, ideas: Proceeding of the 2nd international symposium on algorithms for macromolecular modelling, Berlin, May 21-24, 1997. Berlin/Heidelberg: Springer Science & Business Media; 2012. [Link]
22. Schelling PK, Phillpot SR, Keblinski P. Comparison of atomic-level simulation methods for computing thermal conductivity. Physical Review B. 2002;65(14):144306. [22] [DOI:10.1103/PhysRevB.65.144306]
23. Plimpton S. Fast parallel algorithms for short-range molecular dynamics. Journal of Computational Physics. 1995;117(1):1-19. [Link] [DOI:10.1006/jcph.1995.1039]
24. Tersoff J. New empirical approach for the structure and energy of covalent systems. Physical Review B. 1988;37(12):6991. [Link] [DOI:10.1103/PhysRevB.37.6991]
25. Hu GJ, Cao BY. Thermal conductivity of multi-walled carbon nanotubes: Molecular dynamics simulations. Chinese Physics B. 2014;23(9):096501. [Link] [DOI:10.1088/1674-1056/23/9/096501]
26. Rafii Tabar H. Computational physics of carbon nanotubes. Cambridge UK: Cambridge University Press; 2008. [Link] [DOI:10.1017/CBO9780511541278]
27. Li T, Tang Z, Huang Z, Yu J. Interfacial thermal resistance of 2D and 1D carbon/hexagonal boron nitride van der Waals heterostructures. Carbon. 2016;105:566-571. [Link] [DOI:10.1016/j.carbon.2016.05.001]
28. Hilder TA, Yang R, Ganesh V, Gordon D, Bliznyuk A, Rendell AP, et al. Validity of current force fields for simulations on boron nitride nanotubes. Micro & Nano Letters. 2010;5(2):150-156. [Link] [DOI:10.1049/mnl.2009.0112]
29. Nosé Sh. A molecular dynamics method for simulations in the canonical ensemble. Molecular Physics. 1984;52(2):255-268. [Link] [DOI:10.1080/00268978400101201]
30. Hoover WG. Canonical dynamics: Equilibrium phase-space distributions. Physical Review A. 1985;31(3):1695. [Link] [DOI:10.1103/PhysRevA.31.1695]
31. Lopez-Bezanilla A. Electronic and quantum transport properties of substitutionally doped double-walled carbon nanotubes. The Journal of Physical Chemistry C. 2014;118(3):1472-1477. [Link] [DOI:10.1021/jp410648p]
32. Shen HJ. Thermal-conductivity and tensile-properties of BN, SiC and Ge nanotubes. Computational Materials Science. 2009;47(1):220-224. [Link] [DOI:10.1016/j.commatsci.2009.05.027]
33. Hernández E, Goze C, Bernier P, Rubio A. Elastic properties of single-wall nanotubes. Applied Physics A. 1999;68(3):287-292. [Link] [DOI:10.1007/s003390050890]
34. Zhang X, Zhou WX, Chen XK, Liu YY, Chen KQ. Significant decrease in thermal conductivity of multi-walled carbon nanotube induced by inter-wall van der Waals interactions. Physics Letters A. 2016;380(21):1861-1864. [Link] [DOI:10.1016/j.physleta.2016.03.040]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author