Volume 19, Issue 2 (February 2019)                   Modares Mechanical Engineering 2019, 19(2): 259-268 | Back to browse issues page

XML Persian Abstract Print


1- Manufacturing Department, Mechanical Engineering Faculty, Arak University of Technology, Arak, Iran
2- Manufacturing Department, Mechanical Engineering Faculty, Arak University of Technology, Arak, Iran , hdazodi@arakut.ac.ir
Abstract:   (8044 Views)
Incremental sheet forming is one of the novel processes which is used for rapid prototyping and manufacturing of parts with complex geometries. Forming limit of sheet metal in this process is high compared to other conventional forming processes. In this paper, warm single-point incremental forming process through uniform heating to sheet along with tool heating is studied experimentally and numerically. Formability of sheet is investigated in various process condition based on the straight groove test in experimental approach and numerical simulation using finite element method. Tool heating along with uniform heating to sheet makes tool and sheet isothermal, reduces the heat loss in deformation zone and improves the deformation process. So, attainment of high forming limit is made possible. Comparison of forming limit diagrams obtained from experimental and numerical approaches shows a good agreement between the results. Effects of temperature and feed rate on the forming limit of aluminum 1050 sheet are investigated. Results show that increasing the temperature improves the formability of sheet significantly; but, the temperature is more influential on forming limit in low feed rates. Increasing the feed rate reduces the forming limit slightly; this effect is more evident in higher temperatures.
 
Full-Text [PDF 978 kb]   (2811 Downloads)    
Article Type: Original Research | Subject: Metal Forming
Received: 2018/06/10 | Accepted: 2018/10/8 | Published: 2019/02/17

References
1. Park JJ, Kim YH. Fundamental studies on the incremental sheet metal forming technique. Journal of Materials Processing Technology. 2003;140(1-3):447-453. [Link] [DOI:10.1016/S0924-0136(03)00768-4]
2. Jeswiet J, Micari F, Hirt G, Bramley A, Duflou J, Allwood J. Asymmetric single point incremental forming of sheet metal. CIRP Annals. 2005;54(2):88-114. [Link] [DOI:10.1016/S0007-8506(07)60021-3]
3. Ham M, Jeswiet J. Single point incremental forming and the forming criteria for AA3003. CIRP Annals. 2006;55(1):241-244. [Link] [DOI:10.1016/S0007-8506(07)60407-7]
4. Iseki H, Kumon H. Forming limit of incremental sheet metal stretch forming using spherical rollers. Journal Japan Society for Technology of Plasticity. 1994;35(11):1336. [Link]
5. Kim YH, Park JJ. Effect of process parameters on formability in incremental forming of sheet metal. Journal of Materials Processing Technology. 2002;130-131:42-46. [Link] [DOI:10.1016/S0924-0136(02)00788-4]
6. Shim MS, Park JJ. The formability of aluminium sheet in incremental forming. Journal of Materials Processing Technology. 2001;113(1-3):654-658. [Link] [DOI:10.1016/S0924-0136(01)00679-3]
7. Azodi HD, Dariani BM, Sedaghat H, Mohammadi H. Formability study and forming path optimization in single-point incremental forming process. Journal of Advanced Manufacturing Technology. 2017;11(1):15-27. [Link]
8. Zahedi A, Mollaei Dariani B, Morovvati MR. Numerical and experimental investigation of single point incremental forming of two layer sheet metals. Modares Mechanical Engineering. 2015;14(14):1-8. [Persian] [Link]
9. Mirnia MJ, Mollaei Dariani B. An investigation on multistage incremental forming to control thinning in a truncated cone of an aluminum alloy sheet. Modares Mechanical Engineering. 2015;14(14):262-270. [Persian] [Link]
10. Duflou JR, Callebaut B, Verbert J, De Baerdemaeker H. Improved SPIF performance through dynamic local heating. International Journal of Machine Tools and Manufacture. 2008;48(5):543-549. [Link] [DOI:10.1016/j.ijmachtools.2007.08.010]
11. Fan G, Gao L, Hussain G, Wu Z. Electric hot incremental forming: A novel technique. International Journal of Machine Tools and Manufacture. 2008;48(15):1688-1692. [Link] [DOI:10.1016/j.ijmachtools.2008.07.010]
12. Göttmann A, Diettrich J, Bergweiler G, Bambach M, Hirt G, Loosen P, et al. Laser-assisted asymmetric incremental sheet forming of titanium sheet metal parts. Production Engineering. 2011;5(3):263-271. [Link] [DOI:10.1007/s11740-011-0299-9]
13. Ji YH, Park JJ. Formability of magnesium AZ31 sheet in the incremental forming at warm temperature. Journal of Materials Processing Technology. 2008;201(1-3):354-358. [Link] [DOI:10.1016/j.jmatprotec.2007.11.206]
14. Ji YH, Park JJ. Incremental forming of free surface with magnesium alloy AZ31 sheet at warm temperature. Transactions of Nonferrous Metals Society of China. 2008;18(1):s165-s169. [Link] [DOI:10.1016/S1003-6326(10)60195-1]
15. Ambrogio G, Filice L, Manco GL. Warm incremental forming of magnesium alloy AZ31. CIRP Annals. 2008;57(1):257-260. [Link] [DOI:10.1016/j.cirp.2008.03.066]
16. Park J, Kim J, Park N, Kim Y. Study of forming limit for rotational incremental sheet forming of magnesium alloy sheet. Metallurgical and Materials Transactions A. 2010;41:97. [Link] [DOI:10.1007/s11661-009-0043-7]
17. Ambrogio G, Filice L, Gagliardi F. Formability of lightweight alloys by hot incremental sheet forming. Materials & Design. 2012;34:501-508. [Link] [DOI:10.1016/j.matdes.2011.08.024]
18. Fan G, Sun F, Meng X, Gao L, Tong G. Electric hot incremental forming of Ti-6Al-4V titanium sheet. The International Journal of Advanced Manufacturing Technology. 2010;49(9-12):941-947. [Link] [DOI:10.1007/s00170-009-2472-2]
19. Shi X, Gao L, Khalatbari H, Xu Y, Wang H, Jin LL. Electric hot incremental forming of low carbon steel sheet: Accuracy improvement. The International Journal of Advanced Manufacturing Technology. 2013;68(1-4):241-247. [Link] [DOI:10.1007/s00170-013-4724-4]
20. Meier H, Magnus C, Buff B, Zhu JH. Tool concepts and materials for incremental sheet metal forming with direct resistance heating. Key Engineering Materials. 2013;549:61-67. [Link] [DOI:10.4028/www.scientific.net/KEM.549.61]
21. Ortiz M, Penalva M, Puerto MJ, Homola P, Kafka V. Hot single point incremental forming of Ti-6Al-4V alloy. Key Engineering Materials. 2014;611-612:1079-1087. [Link] [DOI:10.4028/www.scientific.net/KEM.611-612.1079]
22. Van Sy L, Thanh Nam N. Hot incremental forming of magnesium and aluminum alloy sheets by using direct heating system. Proceedings of the Institution of Mechanical Engineers Part B Journal of Engineering Manufacture. 2013;227(8):1099-1110. [Link] [DOI:10.1177/0954405413484014]
23. Fan G, Gao L. Mechanical property of Ti-6Al-4V sheet in one-sided electric hot incremental forming. The International Journal of Advanced Manufacturing Technology. 2014;72(5-8):989-994. [Link] [DOI:10.1007/s00170-014-5733-7]
24. Honarpisheh M, Abdolhoseini MJ, Amini S. Experimental and numerical investigation of the hot incremental forming of Ti-6Al-4V sheet using electrical current. The International Journal of Advanced Manufacturing Technology. 2016;83(9-12):2027-2037. [Link] [DOI:10.1007/s00170-015-7717-7]
25. Taherkhani A, Basti A, Narimanzadeh N, Jamali A. Tool frictional stir effect on dimensional accuracy and formability in single point incremental forming at high rotational speeds. Modares Mechanical Engineering. 2017;16(12):665-674. [Persian] [Link]
26. Barani Shooli A, Amini Najafabadi S, Farzin M. Experimental formability investigation of titanium alloy in hot incremental sheet forming process. Modares Mechanical Engineering. 2015;15(6):107-114. [Persian] [Link]
27. Andrade-Campos A, Menezes LF, Teixeira-Dias F. Numerical analysis of large deformation processes at elevated temperatures. Computer Methods in Applied Mechanics and Engineering. 2006;195(33-36):3947-3959. [Link] [DOI:10.1016/j.cma.2005.07.023]
28. ASM International Handbook Committee, editor. Properties and selection: Nonferrous alloys and special-purpose materials. 10th Edition. Russell Township: ASM International; 1990. pp. 3-215. [Link]
29. Bouffioux C, Lequesne C, Vanhove H, Duflou JR, Pouteau P, Duchêne L, et al. Experimental and numerical study of an AlMgSc sheet formed by an incremental process. Journal of Materials Processing Technology. 2011;211(11):1684-1693. [Link] [DOI:10.1016/j.jmatprotec.2011.05.010]
30. Varthini R, Gandhinathan R, Pandivelan C, Jeevenantham AK. Modeling and optimization of process parameters of the single point incremental forming of aluminum 5052 alloy sheet using genetic algorithm-back propagation neural network. International Journal of Mechanical and Production Engineering. 2014;2(5):55-62. [Link]
31. Eyckens P, Duflou J, Van Bael A, Van Houtte P. The significance of friction in the single point incremental forming process. International Journal of Material Forming. 2010;3 Suppl 1:947-950. [Link] [DOI:10.1007/s12289-010-0925-7]
32. Lu B, Fang Y, Xu DK, Chen J, Ou H, Moser NH, et al. Mechanism investigation of friction-related effects in single point incremental forming using a developed oblique roller-ball tool. International Journal of Machine Tools and Manufacture. 2014;85:14-29. [Link] [DOI:10.1016/j.ijmachtools.2014.04.007]
33. Stören S, Rice JR. Localized necking in thin sheets. Journal of the Mechanics and Physics of Solids. 1975;23(6):421-441. [Link] [DOI:10.1016/0022-5096(75)90004-6]
34. Petek A, Pepelnjak T, Kuzman K. An improved method for determining a forming limit diagram in the digital environment. Strojniški vestnik Journal of Mechanical Engineering. 2005;51(6):330-345. [Link]
35. Emmens WC. Formability: A review of parameters and processes that control, limit or enhance the formability of sheet metal. Heidelberg: Springer Science & Business Media; 2011. [Link] [DOI:10.1007/978-3-642-21904-7]

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.