Volume 19, Issue 9 (September 2019)                   Modares Mechanical Engineering 2019, 19(9): 2079-2084 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Mirahmadi J, Hosseini S, Sedighi M. An Experimental Investigation on a Modified Friction Assisted Tube Straining Method. Modares Mechanical Engineering 2019; 19 (9) :2079-2084
URL: http://mme.modares.ac.ir/article-15-21982-en.html
1- Faculty of Mechanical Engineering, Iran University of Science & Technology, Tehran, Iran
2- Faculty of Mechanical Engineering, Iran University of Science & Technology, Tehran, Iran , sedighi@iust.ac.ir
Abstract:   (6678 Views)
This paper presents a novel severe plastic deformation method entitles modified friction assisted tube straining for producing ultrafine-grained cylindrical tubes. Using friction power generates heat to locally increase temperature of the deformation area and creates severe combined strains and lower pressing force. Experimental tests were executed on Cu/30Zn alloy to investigate applicability of the presented method. The optimum process parameters, 710Rev/min rotary speed and 0.08mm/Rev feed rate were found, applying experimental test to process tubs fault free.  Microstructure study of processed specimens showed a significant grain refinement from the initial value of 76μm to 9μm and 7μm in longitudinal and peripheral directions, respectively. Yield stress and ultimate tensile strength of processed specimens increased to 325 and 202MPa from the initial values of 160MPa in peripheral and longitudinal directions, respectively. Also, hardness significantly increased to 72Hv from the initial value of 48Hv.
Full-Text [PDF 1016 kb]   (1814 Downloads)    
Article Type: Original Research | Subject: Metal Forming
Received: 2018/06/12 | Accepted: 2019/01/26 | Published: 2019/09/1

References
1. Jafarlou DM, Zalnezhad E, Hassan MA, Ezazi MA, Mardi NA, Hamouda AMS. Severe plastic deformation of tubular AA 6061 via equal channel angular pressing. Material & Design. 2016;90:1124-1135. [Link] [DOI:10.1016/j.matdes.2015.11.026]
2. Zhilyaev AP, Langdon TG. Using high-pressure torsion for metal processing: Fundamentals and applications. Progress in Materials Science. 2008;53(6):893-979. [Link] [DOI:10.1016/j.pmatsci.2008.03.002]
3. Xiaolong Z, Qiying T, Yunhong Z. Microstructure and properties of AgSnO 2 composites by accumulative roll-bonding process. Rare Metal Materials and Engineering. 2017;46(4):942-945. [Link] [DOI:10.1016/S1875-5372(17)30126-1]
4. Yu HL, Lu C, Tieu AK, Kong C. Fabrication of nanostructured aluminum sheets using four-layer accumulative roll bonding. Materials and Manufacturing. Processes. 2014;29(4):448-453. [Link] [DOI:10.1080/10426914.2013.872259]
5. Tóth LS, Arzaghi M, Fundenberger JJ, Beausir B, Bouaziz O, Arruffat-Massion R. Severe plastic deformation of metals by high-pressure tube twisting. Scripta Materialia. 2009;60(3):175-177. [Link] [DOI:10.1016/j.scriptamat.2008.09.029]
6. Zangiabadi A, Kazeminezhad M. Development of a novel severe plastic deformation method for tubular materials: Tube channel pressing (TCP). Materials Science and Engineering: A. 2011;528(15):5066-5072. [Link] [DOI:10.1016/j.msea.2011.03.012]
7. Faraji G, Mosavi Mashadi M, Kim HS. Tubular channel angular pressing (TCAP) as a novel severe plastic deformation method for cylindrical tubes. Materials Letters. 2011;65(19-20):3009-3012. [Link] [DOI:10.1016/j.matlet.2011.06.039]
8. Faraji G, Babaei A, Mosavi Mashadi M, Abrinia K. Parallel tubular channel angular pressing (PTCAP) as a new severe plastic deformation method for cylindrical tubes. Materials Letters. 2012;77:82-85. [Link] [DOI:10.1016/j.matlet.2012.03.007]
9. Babaei A, Mosavi Mashadi M, Jafarzadeh H. Tube cyclic expansion-extrusion (TCEE) as a novel severe plastic deformation method for cylindrical tubes. Journal of Materials Science. 2014;49(8):3158-3165. [Link] [DOI:10.1007/s10853-014-8017-6]
10. Jafarzadeh H, Abrinia K. Fabrication of ultra-fine grained Aluminium tubes by RTES technique. Materials Characterization. 2015;102:1-8. [Link] [DOI:10.1016/j.matchar.2014.12.025]
11. Chengpeng W, Fuguo L, Jinghui L. Producing thin-walled tube of pure copper by severe plastic deformation of shear extrusion. Rare Metal Materials and Engineering. 2015;44(10):2391-2395. [Link] [DOI:10.1016/S1875-5372(16)30027-3]
12. Hosseini SH, Sedighi M. On the feasibility of a novel severe plastic deformation method for cylindrical tubes; friction assisted tubular channel pressing (FATCP). Journal of Mechanical Science Technology. 2016;30(11):5153-5157. [Link] [DOI:10.1007/s12206-016-1033-5]
13. ASTM International. E8 - 04 Standard test methods for tension testing of metallic materials [Online]. ASTM International; 2004. Available from: https://www.astm.org/DATABASE.CART/HISTORICAL/E8-04.htm [Link]
14. Dick CP, Korkolis YP. Mechanics and full-field deformation study of the ring hoop tension test. International Journal of Solids and Structurs. 2014;51(18):3042-3057. [Link] [DOI:10.1016/j.ijsolstr.2014.04.023]
15. Sakai T, Belyakov A, Kaibyshev R, Miura H, Jonas JJ. Dynamic and post-dynamic recrystallization under hot cold and severe plastic deformation conditions. Progress in Materials Science. 2014;60:130-207. [Link] [DOI:10.1016/j.pmatsci.2013.09.002]
16. Cho J, Choi M. Voronoi diagram and microstructure of weldment. Dordrecht, Netherlands: Springer; 2015. pp. 1-9. [Link] [DOI:10.1007/978-94-017-9618-7_1]
17. Gao W, Belyakov A, Miura H, Sakai T. Dynamic recrystallization of copper polycrystals with different purities. Materials Science and Engineering: A. 1999;265(1-2):233-239. [Link] [DOI:10.1016/S0921-5093(99)00004-0]
18. Yazdipour N, Davies CHJ, Hodgson PD. Microstructural modeling of dynamic recrystallization using irregular cellular automata. Computational Materials Science. 2008;44(2):566-576. [Link] [DOI:10.1016/j.commatsci.2008.04.027]
19. Tavakkoli V, Afrasiab M, Faraji G, Mashhadi MM. Severe mechanical anisotropy of high-strength ultrafine grained Cu-Zn tubes processed by parallel tubular channel angular pressing (PTCAP). Materials Science and Engineering: A. 2015;625:50-55. [Link] [DOI:10.1016/j.msea.2014.11.085]
20. Abdolvand H, Sohrabi H, Faraji G, Yusof F. A novel combined severe plastic deformation method for producing thin-walled ultrafine grained cylindrical tubes. Materials Letters. 2015;143:167-171. [Link] [DOI:10.1016/j.matlet.2014.12.107]
21. Pasebani S, Toroghinejad MR. Nano-grained 70/30 brass strip produced by accumulative roll-bonding (ARB) process. Materials Science and Engineering: A. 2010;527(3):491-497. [Link] [DOI:10.1016/j.msea.2009.09.029]
22. Hosseini SH, Abrinia K, Faraji G. Applicability of a modified backward extrusion process on commercially pure aluminum. Materials & Design. 2015;65:521-528. [Link] [DOI:10.1016/j.matdes.2014.09.043]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.