Volume 19, Issue 3 (2019)                   Modares Mechanical Engineering 2019, 19(3): 643-653 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Riahi A, Atashkari K, Mahmoudimehr J. A Parametric Study on Optical Performance of a Multi-Tubular Solar Reactor by Monte-Carlo ray Tracing Method. Modares Mechanical Engineering. 2019; 19 (3) :643-653
URL: http://journals.modares.ac.ir/article-15-22252-en.html
1- Energy Conversion Department, Mechanical Engineering Faculty, University of Guilan, Rasht, Iran
2- Energy Conversion Department, Mechanical Engineering Faculty, University of Guilan, Rasht, Iran , atashkar@guilan.ac.ir
Abstract:   (510 Views)
Cavity receiver in solar tower concentrator usually experiences highly intense radiation. Due to asymmetric concentration of solar rays, non-uniform heat flux distribution occurs on the different parts of the cavity receiver. This non-uniform distribution leads to uneven thermal expansion and stresses in receiver, which affects the reliable operation and reduces life time of receiver parts. Therefore, it is necessary to reduce the non-uniformity of solar flux on the surface of the absorber tubes and different parts of the solar reactor. The aim of this study was to focuses on the distributions of concatenated solar flux over graphite tubes of a 50kW solar reactor, which was previously designed for methane thermal dissociation at the focus of a solar furnace. In this study, the absorbed solar power on the different parts of the reactor is determined by Monte Carlo ray tracing method. Moreover, the effect of aperture size and the absorptivity of receiver parts on the net magnitude and distribution of absorbed power in reactor are investigated. The results prove that the 16cm aperture absorbs the maximum power and leads to even better solar flux distributions. Replacing the absorbing walls by the reflective walls will also result in more power absorbed by the tubes and better uniformity of flux distribution around the tubes.
Full-Text [PDF 2163 kb]   (234 Downloads)    

Received: 2018/06/19 | Accepted: 2018/11/18 | Published: 2019/03/1

References
1. Bjorndalen N. High temperature solar furnace: Current applications and future potential. Energy Sources. 2003;25(2):153-159. [Link] [DOI:10.1080/00908310390142217]
2. Shuai Y, Xia XL, Tan HP. Radiation performance of dish solar concentrator/cavity receiver systems. Solar Energy. 2008;82(1):13-21. [Link] [DOI:10.1016/j.solener.2007.06.005]
3. Xie WT, Dai YJ, Wang RZ. Numerical and experimental analysis of a point focus solar collector using high concentration imaging PMMA Fresnel lens. Energy Conversion and Management. 2011;52(6):2417-2426. [Link] [DOI:10.1016/j.enconman.2010.12.048]
4. Mao Q, Shuai Y, Yuan Y. Study on radiation flux of the receiver with a parabolic solar concentrator system. Energy Conversion and Management. 2014;84:1-6. [Link] [DOI:10.1016/j.enconman.2014.03.083]
5. Larrouturou F, Caliot C, Flamant G. Effect of directional dependency of wall reflectivity and incident concentrated solar flux on the efficiency of a cavity solar receiver. Solar Energy. 2014;109:153-164. [Link] [DOI:10.1016/j.solener.2014.08.028]
6. Li S, Xu G, Luo X, Quan Y, Ge Y. Optical performance of a solar dish concentrator/receiver system: Influence of geometrical and surface properties of cavity receiver. Energy. 2016;113:95-107. [Link] [DOI:10.1016/j.energy.2016.06.143]
7. Daabo AM, Mahmoud S, Al-Dadah RK. The optical efficiency of three different geometries of a small scale cavity receiver for concentrated solar applications. Applied Energy. 2016;179:1081-1096. [Link] [DOI:10.1016/j.apenergy.2016.07.064]
8. Abbas R, Mu-oz-Antón J, Valdés M, Martínez-Val JM. High concentration linear Fresnel reflectors. Energy Conversion and Management. 2013;72:60-68. [Link] [DOI:10.1016/j.enconman.2013.01.039]
9. Moghimi MA, Craig KJ, Meyer JP. A novel computational approach to combine the optical and thermal modelling of Linear Fresnel Collectors using the finite volume method. Solar Energy. 2015;116:407-427. [Link] [DOI:10.1016/j.solener.2015.04.014]
10. Facão J, Oliveira AC. Numerical simulation of a trapezoidal cavity receiver for a linear Fresnel solar collector concentrator. Renewable Energy. 2011;36(1):90-96. [Link] [DOI:10.1016/j.renene.2010.06.003]
11. Qiu Y, He YL, Wu M, Zheng ZJ. A comprehensive model for optical and thermal characterization of a linear Fresnel solar reflector with a trapezoidal cavity receiver. Renewable Energy. 2016;97:129-144. [Link] [DOI:10.1016/j.renene.2016.05.065]
12. Bellos E, Mathioulakis E, Tzivanidis Ch, Belessiotis V, Antonopoulos KA. Experimental and numerical investigation of a linear Fresnel solar collector with flat plate receiver. Energy Conversion and Management. 2016;130:44-59. [Link] [DOI:10.1016/j.enconman.2016.10.041]
13. Mills DR, Morrison GL. Compact linear Fresnel reflector solar thermal powerplants. Solar Energy. 2000;68(3):263-283. [Link] [DOI:10.1016/S0038-092X(99)00068-7]
14. Lin M, Sumathy K, Dai YJ, Wang RZ, Chen Y. Experimental and theoretical analysis on a linear Fresnel reflector solar collector prototype with V-shaped cavity receiver. Applied Thermal Engineering. 2013;51(1-2):963-972. [Link] [DOI:10.1016/j.applthermaleng.2012.10.050]
15. Pye JD, Morrison GL, Behnia M, Mills D. Modelling of cavity receiver heat transfer for the compact linear fresnel reflector. ANZSES Annual Conference Melbourne, January 2003. Göteborg: Sweden; 2003. p. 69. [Link]
16. Abbas R, Valdés M, Montes MJ, Martinez-Val JM. Design of an innovative linear Fresnel collector by means of optical performance optimization: A comparison with parabolic trough collectors for different latitudes. Solar Energy. 2017;153:459-470. [Link] [DOI:10.1016/j.solener.2017.05.047]
17. Abanades S, Flamant G. Solar hydrogen production from the thermal splitting of methane in a high temperature solar chemical reactor. Solar Energy. 2006;80(10):1321-1332. [Link] [DOI:10.1016/j.solener.2005.11.004]
18. Hirsch D, Steinfeld A. Solar hydrogen production by thermal decomposition of natural gas using a vortex-flow reactor. International Journal of Hydrogen Energy. 2004;29(1):47-55. [Link] [DOI:10.1016/S0360-3199(03)00048-X]
19. Z'graggen A, Haueter P, Maag G, Vidal A, Romero M, Steinfeld A. Hydrogen production by steam-gasification of petroleum coke using concentrated solar power-III. Reactor experimentation with slurry feeding. International Journal of Hydrogen Energy. 2007;32(8):992-996. [Link] [DOI:10.1016/j.ijhydene.2006.10.001]
20. Von Zedtwitz P, Lipiński W, Steinfeld A. Numerical and experimental study of gas-particle radiative heat exchange in a fluidized-bed reactor for steam-gasification of coal. Chemical Engineering Science. 2007;62(1-2):599-607. [Link] [DOI:10.1016/j.ces.2006.09.027]
21. Maag G, Zanganeh G, Steinfeld A. Solar thermal cracking of methane in a particle-flow reactor for the co-production of hydrogen and carbon. International Journal of Hydrogen Energy. 2009;34(18):7676-7685. [Link] [DOI:10.1016/j.ijhydene.2009.07.037]
22. Villasmil W, Brkic M, Wuillemin D, Meier A, Steinfeld A. Pilot scale demonstration of a 100-kWth solar thermochemical plant for the thermal dissociation of ZnO. Journal of Solar Energy Engineering. 2014;136(1):011016. [Link] [DOI:10.1115/1.4025512]
23. Martinek J, Weimer AW. Design considerations for a multiple tube solar reactor. Solar Energy. 2013;90:68-83. [Link] [DOI:10.1016/j.solener.2013.01.004]
24. Dahl JK, Buechler KJ, Finley R, Stanislaus T, Weimer AW, Lewandowski A, et al. Rapid solar-thermal dissociation of natural gas in an aerosol flow reactor. Energy. 2004;29(5-6):715-725. [Link] [DOI:10.1016/S0360-5442(03)00179-8]
25. Rodat S, Abanades S, Flamant G. Co-production of hydrogen and carbon black from solar thermal methane splitting in a tubular reactor prototype. Solar Energy. 2011;85(4):645-652. [Link] [DOI:10.1016/j.solener.2010.02.016]
26. Trombe F, Le Phat Vinh A. Thousand kW solar furnace, built by the National Center of Scientific Research, in Odeillo (France). Solar Energy. 1973;15(1):57-61. [Link] [DOI:10.1016/0038-092X(73)90006-6]
27. Rodat S, Abanades S, Sans JL, Flamant G. Hydrogen production from solar thermal dissociation of natural gas: Development of a 10 kW solar chemical reactor prototype. Solar Energy. 2009;83(9):1599-1610. [Link] [DOI:10.1016/j.solener.2009.05.010]
28. Rodat S, Abanades S, Sans JL, Flamant G. A pilot-scale solar reactor for the production of hydrogen and carbon black from methane splitting. International Journal of Hydrogen Energy. 2010;35(15):7748-7758. [Link] [DOI:10.1016/j.ijhydene.2010.05.057]
29. Villasmil W. Dynamic modeling and experimental demonstration of a 100-kWth solar thermochemical reactor for ZnO dissociation [Dissertation]. Zurich: ETH Zurich; 2013. [Link]
30. Guillot E, Alxneit I, Ballestrin J, Sans JL, Willsh Ch. Comparison of 3 heat flux gauges and a water calorimeter for concentrated solar irradiance measurement. Energy Procedia. 2014;49:2090-2099. [Link] [DOI:10.1016/j.egypro.2014.03.221]
31. Polyanin AD, Manzhirov AV. Handbook of mathematics for engineers and scientists. 1th Edition. Boca Raton: Chapman and Hall/CRC; 2006. [Link] [DOI:10.1201/9781420010510]
32. Howell JR, Menguc MP, Siegel R. Thermal radiation heat transfer. 5th Edition. Boca Raton: CRC press; 2010. [Link] [DOI:10.1201/9781439894552]
33. Wendelin T. SolTRACE: A new optical modeling tool for concentrating solar optics. ASME 2003 International Solar Energy Conference, 15-18 March, 2003, Kohala Coast, Hawaii, USA. New York: American Society of Mechanical Engineers; 2003. p. 253-260. [Link] [DOI:10.1115/ISEC2003-44090]
34. Reis F. Development of photovoltaic systems with concentration [Dissertation]. Lisbon: University of Lisbon; 2013. [Link]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author