Volume 20, Issue 1 (January 2020)                   Modares Mechanical Engineering 2020, 20(1): 227-239 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Saeedi A, Hassani B. Isogeometric Buckling Analysis of Stiffened Plates. Modares Mechanical Engineering 2020; 20 (1) :227-239
URL: http://mme.modares.ac.ir/article-15-22288-en.html
1- Mechanical Engineering Department, Ferdowsi University of Mashhad, Mashhad, Iran
2- Mechanical Engineering Department, Ferdowsi University of Mashhad, Mashhad, Iran , b_hassani@um.ac.ir
Abstract:   (2566 Views)
Isogeometric analysis is a new approach in computational mechanics where the geometry and computational modeling is carried out by using NURBS and B-spline functions. The main advantage of the isogeometric approach is in unifying the discretization and problem-solving processes that lead to saving of computational time and cost. In this research, the governing equations of buckling analysis of thin plates stiffened with stiffeners with various geometries are obtained by use of the variational accounting method and first-order shear deformation theory (FSDT). The geometry of stiffener and its position on arbitrarily plate are considered. The equation of buckling is derived by employing the total potential energy, and the obtained system of equations is solved by discretization with the isogeometric analysis method. One of the main advantages of this approach is that it does not need a fine mesh for unification of the connection between the plate and its stiffeners so that, it leads to more accurate answers in comparison with other numerical methods and commercial software with the same number of unknowns. Finally, In order to verification, a few examples are presented and the obtained results are compared with the available results of the analytical and numerical method.
Full-Text [PDF 1316 kb]   (1979 Downloads)    
Article Type: Original Research | Subject: Aerospace Structures
Received: 2018/06/20 | Accepted: 2019/05/14 | Published: 2020/01/20

References
1. Timoshenko SP, Gere JM. Theory of elastic stability. 2nd Edition. New York: Dover Publications; 2012. [Link]
2. Block DL, Card MF, Mikulas MM. Buckling of eccentrically stiffened orthotropic cylinders [Report]. Washington, D.C.: NASA; 1965 Aug. Report No.: NASA-TN-D-2960. [Link]
3. Reddy JN, Khdeir AA. Buckling and vibration of laminated composite plates using various plate theories. AIAA Journal. 1989;27(12):1808-1817. [Link] [DOI:10.2514/3.10338]
4. Mukhopadhyay M, Mukherjee A. Finite element buckling analysis of stiffened plates. Computers & Structures. 1990;34(6):795-803. [Link] [DOI:10.1016/0045-7949(90)90350-B]
5. Hosseini-Hashemi Sh, Khorshidi K, Amabili M. Exact solution for linear buckling of rectangular Mindlin plates. Journal of Sound and Vibration. 2008;315(1-2):318-342. [Link] [DOI:10.1016/j.jsv.2008.01.059]
6. Khorshidi K, Fallah A. Buckling analysis of functionally graded rectangular nano-plate based on nonlocal exponential shear deformation theory. International Journal of Mechanical Sciences. 2016;113:94-104. [Link] [DOI:10.1016/j.ijmecsci.2016.04.014]
7. Khorshidi K, Fallah A. Effect of exponential stress resultant on buckling re-sponse of functionally graded rectangular plates. Journal of Stress Analysis. 2017;2(1):27-33. [Link]
8. Fujikubo M, Yao T. Elastic local buckling strength of stiffened plate considering plate/stiffener interaction and welding residual stress. Marine Structures. 1999;12(9-10):543-564. [Link] [DOI:10.1016/S0951-8339(99)00032-5]
9. Byklum E, Amdahl J. A simplified method for elastic large deflection analysis of plates and stiffened panels due to local buckling. Thin-Walled Structures. 2002;40(11):925-953. [Link] [DOI:10.1016/S0263-8231(02)00042-3]
10. Srivastava AKL, Datta PK, Sheikh AH. Buckling and vibration of stiffened plates subjected to partial edge loading. International Journal of Mechanical Sciences. 2003;45(1):73-93. [Link] [DOI:10.1016/S0020-7403(03)00038-9]
11. Byklum E, Steen E, Amdahl J. A semi-analytical model for global buckling and postbuckling analysis of stiffened panels. Thin Walled Structures. 2004;42(5):701-717. [Link] [DOI:10.1016/j.tws.2003.12.006]
12. Peng LX, Liew KM, Kitipornchai S. Buckling and free vibration analyses of stiffened plates using the FSDT mesh-free method. Journal of Sound and Vibration. 2006;289(3):421-449. [Link] [DOI:10.1016/j.jsv.2005.02.023]
13. Zhang Sh, Khan I. Buckling and ultimate capability of plates and stiffened panels in axial compression. Marine Structures. 2009;22(4):791-808. [Link] [DOI:10.1016/j.marstruc.2009.09.001]
14. Yeilaghi Tamijani A, Kapania RK. Buckling and static analysis of curvilinearly stiffened plates using mesh-free method. AIAA Journal. 2010;48(12):2739-2751. [Link] [DOI:10.2514/1.43917]
15. Yeilaghi Tamijani A, Kapania RK. Chebyshev-ritz approach to buckling and vibration of curvilinearly stiffened plate. AIAA Journal. 2012;50(5):1007-1018. [Link] [DOI:10.2514/1.J050042]
16. Shi P, Kapania RK, Dong CY. Vibration and buckling analysis of curvilinearly stiffened plates using finite element method. AIAA Journal. 2015;53(5):1319-1335. [Link] [DOI:10.2514/1.J053358]
17. Bhar A, Phoenix SS, Satsangi SK. Finite element analysis of laminated composite stiffened plates using FSDT and HSDT: A comparative perspective. Composite Structures. 2010;92(2):312-321. [Link] [DOI:10.1016/j.compstruct.2009.08.002]
18. Farzam-Rad SA, Hassani B, Karamodin A. Isogeometric analysis of functionally graded plates using a new quasi-3D shear deformation theory based on physical neutral surface. Composites Part B: Engineering. 2017;108:174-189. [Link] [DOI:10.1016/j.compositesb.2016.09.029]
19. Farzam A, Hassani B. Thermal and mechanical buckling analysis of FG carbon nanotube reinforced composite plates using modified couple stress theory and isogeometric approach. Composite Structures. 2018;206:774-790. [Link] [DOI:10.1016/j.compstruct.2018.08.030]
20. Farzam A, Hassani B. Size-dependent analysis of FG microplates with temperature-dependent material properties using modified strain gradient theory and isogeometric approach. Composites Part B: Engineering. 2019;161:150-168. [Link] [DOI:10.1016/j.compositesb.2018.10.028]
21. Farzam A, Hassani B. A new efficient shear deformation theory for FG plates with in-plane and through-thickness stiffness variations using isogeometric approach. Mechanics of Advanced Materials and Structures. 2019;26(6):512-525. [Link] [DOI:10.1080/15376494.2017.1400623]
22. Farzam A, Hassani B, Karamodin A. Size-dependent analysis of functionally graded nanoplates using refined plate theory and isogeometric approach. 11th International Congress on Civil Engineering, 2018 May 8-10, Tehran, Iran. Tehran: University of Tehran; 2018. [Link]
23. Farzam A, Hassani B, Karamodin A. Free vibration analysis of FG nonoplates using quasi-3D hyperbolic refined plate theory and the isogeometric approach. International Congress on Science and Engineering, 2018 March 12, Hamburg, Germany. Unknown city: Unknown Publisher; 2018. [Link]
24. Khorshidi K, Asgari T, Fallah A. Free vibrations analysis of functionally graded rectangular nano-plates based on nonlocal exponential shear deformation theory. Mechanics of Advanced Composite Structures. 2015;2(2):79-93. [Link]
25. Khorshidi K, Khodadadi M. Precision closed-form solution for out-of-plane vibration of rectangular plates via trigonometric shear deformation theory. Mechanics of Advanced Composite Structures. 2016;3(1):31-43. [Link]
26. Khorshidi K, Khodadadi M. Precision closed-form solution for out-of-plane vibration of rectangular plates via trigonometric shear deformation theory. Mechanics of Advanced Composite Structures. 2017;4(2):127-137. [Link]
27. Khorshidi K, Siahpush A, Fallah A. Electro-mechanical free vibrations analysis of composite rectangular piezoelectric nanoplate using modified shear deformation theories. Journal of Science and Technology of Composites. 2017;4(2):151-160. [Persian] [Link]
28. Noorabadi M, Najafi M, Nobakhti A, Eskandarijam J. Optimization of static and dynamic parameters of stiffened plates. 14th Marine Industrials Conference, 2012 December 26-27, Tehran, Iran. Iranian Association of Naval Architecture and Marine Engineering; 2012. [Persian] [Link]
29. Nguyen-Thoi T, Bui-Xuan T, Phung-Van P, Nguyen-Xuan H, Ngo-Thanh P. Static, free vibration and buckling analyses of stiffened plates by CS-FEM-DSG3 using triangular elements. Computers & Structures. 2013;125:100-113. [Link] [DOI:10.1016/j.compstruc.2013.04.027]
30. Golmakani ME, Zeighami V. Buckling analysis of functionally graded carbon nanotube-reinforced composite plates using incremental loading and dynamic relaxation methods. Numerical Methods in Engineering. 2016;35(1):43-63. [Persian] [Link] [DOI:10.18869/acadpub.jcme.35.1.43]
31. Zhao W, Kapania RK. Buckling analysis of unitized curvilinearly stiffened composite panels. Composite Structures. 2016;135:365-382. [Link] [DOI:10.1016/j.compstruct.2015.09.041]
32. Qin XC, Dong CY, Wang F, Qu XY. Static and dynamic analyses of isogeometric curvilinearly stiffened plates. Applied Mathematical Modelling. 2017;45:336-364. [Link] [DOI:10.1016/j.apm.2016.12.035]
33. Hao P, Yuan X, Liu H, Wang B, Liu Ch, Yang D, et al. Isogeometric buckling analysis of composite variable-stiffness panels. Composite Structures. 2017;165:192-208. [Link] [DOI:10.1016/j.compstruct.2017.01.016]
34. Austin Cottrell J, Hughes TJR, Bazilevs Y. Isogeometric analysis: Toward integration of CAD and FEA. Hoboken: John Wiley & Sons; 2009. [Link] [DOI:10.1002/9780470749081]
35. Piegl L, Tiller W. The NURBS book. 2nd Edition. Berlin: Springer; 1997. [Link] [DOI:10.1007/978-3-642-59223-2]
36. Reddy JN. Energy principles and variational methods in applied mechanics. 3rd Edition. Hoboken: John Wiley & Sons; 2017. [Link]
37. Beer G, Bordas S, editors. Isogeometric methods for numerical simulation. Berlin: Springer; 2015. [Link] [DOI:10.1007/978-3-7091-1843-6]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.