Volume 19, Issue 3 (March 2019)                   Modares Mechanical Engineering 2019, 19(3): 631-642 | Back to browse issues page

XML Persian Abstract Print


1- Mechanical Engineering Department, Engineering Faculty, University of Mohaghegh Ardabili, Ardabil, Iran
2- Mechanical Engineering Department, Engineering Faculty, University of Mohaghegh Ardabili, Ardabil, Iran , hghaebi@uma.ac.ir
Abstract:   (3944 Views)
In this paper, a novel multi-generation system based on gas turbine-modular helium reactor cycle is presented. Integrated system consists of a Gas turbine-modular helium reactor cycle as a base cycle and from the combination of subsystems, hydrogen production, absorption refrigeration cycle, and desalination system. Thermodynamic comprehensive modeling (energy and exergy) was done on the suggested system. The effect of various system parameters, such as turbine inlet temperature, compressor pressure ratio, carbon dioxide to methane molar ratio, vapor generator temperature, and mass flow rate of the desalination system have been evaluated on the overall performance of the system. Also, optimization of the overall system using single and multi-objective optimization method has been investigated in terms of energy and exergy compared to the base case. The results showed that the maximum net power output and the energy efficiency and exergy of the overall system in compressor pressure ratio between 2.3-2.45 were 275 MW, 72.05%, and 49.35%, respectively, and with increasing turbine inlet temperature, heat production rate and energy and exergy efficiencies of overall system increases and the cooling production rate and freshwater decreases. In addition, the optimal point of the mass flow ratio of the desalination system for the energy and exergy efficiencies of overall system is 2.857. According to the results obtained in the multi-objective optimization method, the energy and exergy efficiencies of overall system were 74.41% and 50.21%, respectively, and exergy destruction has been reduced to 0.74% compared to base case.
Full-Text [PDF 1119 kb]   (2881 Downloads)    
Article Type: Original Research | Subject: Thermodynamics
Received: 2018/06/28 | Accepted: 2018/11/3 | Published: 2019/03/1

References
1. Dincer I, Zamfirescu C. Advanced power generation systems. 1st Edition. Cambridge: Academic Press; 2014. [Link]
2. Wang J, Dai Y, Gao L. Exergy analyses and parametric optimizations for different cogeneration power plants in cement industry. Applied Energy. 2009;86(6):941-948. [Link] [DOI:10.1016/j.apenergy.2008.09.001]
3. El-Genk MS, Tournier JM. On the use of noble gases and binary mixtures as reactor coolants and CBC working fluids. Energy Conversion and Management. 2008;49(7):1882-1891. [Link] [DOI:10.1016/j.enconman.2007.08.017]
4. El-Genk MS, Tournier JM. Noble gas binary mixtures for gas-cooled reactor power plants. Nuclear Engineering and Design. 2008;238(6):1353-1372. [Link] [DOI:10.1016/j.nucengdes.2007.10.021]
5. Nisan S, Benzarti N. A comprehensive economic evaluation of integrated desalination systems using fossil fuelled and nuclear energies and including their environmental costs. Desalination. 2008;229(1-3):125-146. [Link] [DOI:10.1016/j.desal.2007.07.031]
6. Yari M. Waste heat recovery from closed Brayton cycle using organic Rankine cycle: Thermodynamic analysis. ASME Turbomachinery Technical Conference & Exposition, Power for Land, Sea and Air, June 8-12, 2009, Orlando, Florida, USA; 2009. p. 413-424. [Link] [DOI:10.1115/GT2009-60023]
7. Yari M, Mahmoudi SMS. Utilization of waste heat from GT-MHR for power generation in organic Rankine cycles. Applied Thermal Engineering. 2010;30(4):366-375. [Link] [DOI:10.1016/j.applthermaleng.2009.09.017]
8. Zare V, Yari M, Mahmoudi SMS. Proposal and analysis of a new combined cogeneration system based on the GT-MHR cycle. Desalination. 2012;286:417-428. [Link] [DOI:10.1016/j.desal.2011.12.001]
9. Zare V, Mahmoudi SMS, Yari M. Ammonia-water cogeneration cycle for utilizing waste heat from the GT-MHR plant. Applied Thermal Engineering. 2012;48:176-185. [Link] [DOI:10.1016/j.applthermaleng.2012.05.009]
10. Zare V, Mahmoudi SMS, Yari M. An exergoeconomic investigation of waste heat recovery from the gas turbine-modular helium reactor (GT-MHR) employing an ammonia-water power/cooling cycle. Energy. 2013;61:397-409. [Link] [DOI:10.1016/j.energy.2013.09.038]
11. Soroureddin A, Mehr AS, Mahmoudi SMS, Yari M. Thermodynamic analysis of employing ejector and organic Rankine cycles for GT-MHR waste heat utilization: A comparative study. Energy Conversion and Management. 2013;67:125-137. [Link] [DOI:10.1016/j.enconman.2012.11.015]
12. Zare V, Mahmoudi SMS. A thermodynamic comparison between organic Rankine and Kalina cycles for waste heat recovery from the gas turbine-modular helium reactor. Energy. 2015;79:398-406. [Link] [DOI:10.1016/j.energy.2014.11.026]
13. Rabiei R, Hanifi Miangafsheh K, Zoghi M, Yari M. Energy and exergoeconomic analysis of combined cogeneration gas turbine-modular helium reactor, Kalina cycle and absorption refrigeration cycle. Modares Mechanical Engineering. 2018;18(6):113-121. [Persian] [Link]
14. Mosaffa AH, Hasani Mokarram N, Garousi Farshi L. Thermoeconomic analysis of a new combination of ammonia/water power generation cycle with GT-MHR cycle and LNG cryogenic exergy. Applied Thermal Engineering. 2017;124:1343-1353. [Link] [DOI:10.1016/j.applthermaleng.2017.06.126]
15. Jaszczur M, Rosen MA, Śliwa T, Dudek M, Pieńkowski L. Hydrogen production using high temperature nuclear reactors: Efficiency analysis of a combined cycle. International Journal of Hydrogen Energy. 2016;41(19):7861-7871. [Link] [DOI:10.1016/j.ijhydene.2015.11.190]
16. Elder R, Allen R. Nuclear heat for hydrogen production: Coupling a very high/high temperature reactor to a hydrogen production plant. Progress in Nuclear Energy. 2009;51(3):500-525. [Link] [DOI:10.1016/j.pnucene.2008.11.001]
17. Nami H, Mohammadkhani F, Ranjbar F. Utilization of waste heat from GTMHR for hydrogen generation via combination of organic Rankine cycles and PEM electrolysis. Energy Conversion and Management. 2016;127:589-598. [Link] [DOI:10.1016/j.enconman.2016.09.043]
18. Dardour S, Nisan S, Charbit F. Utilisation of waste heat from GT-MHR and PBMR reactors for nuclear desalination. Desalination. 2007;205(1-3):254-268. [Link] [DOI:10.1016/j.desal.2006.03.554]
19. Khalid F, Dincer I, Rosen MA. Analysis and assessment of a gas turbine-modular helium reactor for nuclear desalination. Journal of Nuclear Engineering and Radiation Science. 2016;2(3):031014. [Link] [DOI:10.1115/1.4032508]
20. Galvagno A, Chiodo V, Urbani F, Freni F. Biogas as hydrogen source for fuel cell applications. International Journal of Hydrogen Energy. 2013;38(10):3913-3920. [Link] [DOI:10.1016/j.ijhydene.2013.01.083]
21. Jakobsen JG, Jørgensen TL, Chorkendorff I, Sehested J. Steam and CO2 reforming of methane over a Ru/ZrO2 catalyst. Applied Catalysis A General. 2010;377(1-2):158-166. [Link] [DOI:10.1016/j.apcata.2010.01.035]
22. Guczi L, Erdôhelyi A, editors. Catalysis for alternative energy generation. 2nd Edition. New York: Springer Science & Business Media; 2012. [Link] [DOI:10.1007/978-1-4614-0344-9]
23. Rahimpour MR, Dehnavi MR, Allahgholipour F, Iranshahi D, Jokar SM. Assessment and comparison of different catalytic coupling exothermic and endothermic reactions: A review. Applied Energy. 2012;99:496-512. [Link] [DOI:10.1016/j.apenergy.2012.04.003]
24. Izquierdo U, Barrio VL, Lago N, Requies J, Cambra JF, Güemez MB, et al. Biogas steam and oxidative reforming processes for synthesis gas and hydrogen production in conventional and microreactor reaction systems. International Journal of Hydrogen Energy. 2012;37(18):13829-13842. [Link] [DOI:10.1016/j.ijhydene.2012.04.077]
25. Kolbitsch P, Pfeifer Ch, Hofbauer H. Catalytic steam reforming of model biogas. Fuel. 2008;87(6):701-706. [Link] [DOI:10.1016/j.fuel.2007.06.002]
26. Gangadharan P, Kanchi KC, Lou HH. Evaluation of the economic and environmental impact of combining dry reforming with steam reforming of methane. Chemical Engineering Research and Design. 2012;90(11):1956-1968. [Link] [DOI:10.1016/j.cherd.2012.04.008]
27. Klein S, Nellis G. Thermodynamics. 1st Edition. New York: Cambridge University press; 2011. [Link] [DOI:10.1017/CBO9780511994883]
28. Wang W, Cao Y. Hydrogen production via sorption enhanced steam reforming of butanol: Thermodynamic analysis. International Journal of Hydrogen Energy. 2011;36(4):2887-2895. [Link] [DOI:10.1016/j.ijhydene.2010.11.110]
29. Bejan A, Tsatsaronis G, Moran M. Thermal design and optimization. Hoboken: John Wiley & Sons; 1996. [Link]
30. Rabbani M, Dincer I. Energetic and exergetic assessments of glycerol steam reforming in a combined power plant for hydrogen production. International Journal of Hydrogen Energy. 2015;40(34):11125-11132. [Link] [DOI:10.1016/j.ijhydene.2015.04.012]
31. Ghaebi H, Shekari Namin A, Rostamzadeh H. Performance assessment and optimization of a novel multi-generation system from thermodynamic and thermoeconomic viewpoints. Energy Conversion and Management. 2018;165:419-439. [Link] [DOI:10.1016/j.enconman.2018.03.055]
32. Szargut J, Morris DR, Steward FR. Exergy analysis of thermal, chemical, and metallurgical processes. New York: Hemisphere; 1988. [Link]
33. Ghaebi H, Parikhani T, Rostamzadeh H, Farhang B. Thermodynamic and thermoeconomic analysis and optimization of a novel combined cooling and power (CCP) cycle by integrating of ejector refrigeration and Kalina cycles. Energy. 2017;139:262-276. [Link] [DOI:10.1016/j.energy.2017.07.154]
34. Zare V, Mahmoudi SMS, Yari M, Amidpour M. Thermoeconomic analysis and optimization of an ammonia-water power/cooling cogeneration cycle. Energy. 2012;47(1):271-283. [Link] [DOI:10.1016/j.energy.2012.09.002]
35. Sharqawy MH, Antar MA, Zubair SM, Elbashir AM. Optimum thermal design of humidification dehumidification desalination systems. Desalination. 2014;349:10-21. [Link] [DOI:10.1016/j.desal.2014.06.016]
36. Prakash Narayan G, John MGS, Zubair SM, Lienhard V JH. Thermal design of the humidification dehumidification desalination system: An experimental investigation. International Journal of Heat and Mass Transfer. 2013;58(1-2):740-748. [Link] [DOI:10.1016/j.ijheatmasstransfer.2012.11.035]
37. Sun DW. Comparison of the performances of NH3-H2O, NH3-LiNO3 and NH3-NaSCN absorption refrigeration systems. Energy Conversion and Management. 1998;39(5-6):357-368. [Link] [DOI:10.1016/S0196-8904(97)00027-7]
38. Wegeng R, Diver R, Humble P. Second law analysis of a solar methane reforming system. Energy Procedia. 2014;49:1248-1258. [Link] [DOI:10.1016/j.egypro.2014.03.134]
39. Ahmed Sh, Lee SHD, Ferrandon MS. Catalytic steam reforming of biogas-effects of feed composition and operating conditions. International Journal of Hydrogen Energy. 2015;40(2):1005-1015. [Link] [DOI:10.1016/j.ijhydene.2014.11.009]
40. Mohammadkhani F, Shokati N, Mahmoudi SMS, Yari M, Rosen MA. Exergoeconomic assessment and parametric study of a Gas Turbine-Modular Helium Reactor combined with two Organic Rankine Cycles. Energy. 2014;65:533-543. [Link] [DOI:10.1016/j.energy.2013.11.002]
41. Herold KE, Radermacher R, Klein SA. Absorption chillers and heat pumps. 2nd Edition. Boca Raton: CRC press; 2016. [Link] [DOI:10.1201/b19625]
42. Simpson AP, Lutz AE. Exergy analysis of hydrogen production via steam methane reforming. International Journal of Hydrogen Energy. 2007;32(18):4811-4820. [Link] [DOI:10.1016/j.ijhydene.2007.08.025]

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.