Volume 19, Issue 1 (2019)                   Modares Mechanical Engineering 2019, 19(1): 201-209 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Heidary S, Beigzadeh B. Design New Cable System to Drive Exoskeleton Fingers for Rehabilitation. Modares Mechanical Engineering. 2019; 19 (1) :201-209
URL: http://journals.modares.ac.ir/article-15-22554-en.html
1- Mechanical Engineering School, Iran University of Science and Technology, Tehran, Iran
2- Mechanical Engineering School, Iran University of Science and Technology, Tehran, Iran , b_beigzadeh@iust.ac.ir
Abstract:   (409 Views)
Anthropomorphic robotic hand has always been one of the interesting topics for researchers in recent decades due to its application range, including space exploration, medicine, military, etc. In this paper, a new plan is designed to drive exoskeleton fingers and by means of which the fingers can not only mimic human-like movements, but also be lightweight and portable. In this way, before implementation of the new plan, the anatomy of index finger and related kinematic were studied to give a hand to the extraction of angle relationships among distal, middle, and proximal phalanges. In upcoming step, theories, and mathematical relations about replacing sheaths and its influence on bending joints, based on the coupling mechanisms, were explained and applied clearly. Additionally, considering extracted relationships and equations in prior section, a new model of robotic finger with mentioned properties was simulated in MSC ADAMS software. In following step, after linking the software with Matlab, the results of the simulation and comparing them with human finger in the configuration and generation of humanoid movements were discussed. In the last step, according to simulation results, an example was constructed and presented, using a 3D printer in accordance with the proposed mechanism.
 
Full-Text [PDF 864 kb]   (264 Downloads)    

Received: 2018/06/29 | Accepted: 2018/10/7 | Published: 2019/01/1

References
1. Jack D, Boian R, Merians AS, Tremaine M, Burdea GC, Adamovich SV, et al. Virtual reality-enhanced stroke rehabilitation. IEEE Transactions On Neural Systems And Rehabilitation Engineering. 2001;9(3):308-318. [Link] [DOI:10.1109/7333.948460]
2. Holden MK. Virtual environments for motor rehabilitation: Review. Cyberpsychology & behavior. 2005 ;8(3):187-211. [Link] [DOI:10.1089/cpb.2005.8.187]
3. Li Z, Huang Z, He W, Su CY. Adaptive impedance control for an upper limb robotic exoskeleton using biological signals. IEEE Transactions on Industrial Electronics. 2017;64(2):1664-1674. [Link] [DOI:10.1109/TIE.2016.2538741]
4. Hussain I, Salvietti G, Spagnoletti G, Malvezzi M, Cioncoloni D, Rossi S, et al. A soft supernumerary robotic finger and mobile arm support for grasping compensation and hemiparetic upper limb rehabilitation. Robotics and Autonomous Systems. 2017;93:1-12. [Link] [DOI:10.1016/j.robot.2017.03.015]
5. Bianchi M, Cempini M, Conti R, Meli E, Ridolfi A, Vitiello N, et al. Design of a series elastic transmission for hand exoskeletons. Mechatronics. 2018;51:8-18. [Link] [DOI:10.1016/j.mechatronics.2018.02.010]
6. Park Y, Jo I, Lee J, Bae J. A dual-cable hand exoskeleton system for virtual reality. Mechatronics. 2018;49:177-186. [Link] [DOI:10.1016/j.mechatronics.2017.12.008]
7. Ueki S, Kawasaki H, Ito S, Nishimoto Y, Abe M, Aoki T, et al. Development of a hand-assist robot with multi-degrees-of-freedom for rehabilitation therapy. IEEE/ASME Transactions on Mechatronics. 2012;17(1):136-146. [Link] [DOI:10.1109/TMECH.2010.2090353]
8. Agarwal P, Deshpande AD. Subject-specific assist-as-needed controllers for a hand exoskeleton for rehabilitation. IEEE Robotics and Automation Letters. 2018;3(1):508-515. [Link] [DOI:10.1109/LRA.2017.2768124]
9. Gilardi G, Haslam E, Bundhoo V, Park EJ. A shape memory alloy based tendon-driven actuation system for biomimetic artificial fingers, part II: Modelling and control. Robotica. 2010;28(5):675-687. [Link] [DOI:10.1017/S0263574709990324]
10. Agarwal P, Fox J, Yun Y, O'Malley MK, Deshpande AD. An index finger exoskeleton with series elastic actuation for rehabilitation: Design, control and performance characterization. The International Journal of Robotics Research. 2015;34(14):1747-1772. [Link] [DOI:10.1177/0278364915598388]
11. Kappassov Z, Corrales JA, Perdereau V. Tactile sensing in dexterous robot hands-review. Robotics and Autonomous Systems. 2015;74(Pt A):195-220. 25- Levangie PK, Norkin CC. Joint structure and function: A comprehensive analysis. Philadelphia: F. A. Davis; 2011. 30- Xu P, Zhao XH, Li HG. Analysis of the transmission performance and kinematics simulation of 3-RRRT parallel manipulator. Journal of Tianjin University of Technology. 2009;(3). 31- Vignais N, Marin F. Modelling the musculoskeletal system of the hand and forearm for ergonomic applications. Computer Methods in Biomechanics and Biomedical Engineering. 2011;14(suppl 1):75-76. [Link]
12. Palli G, Melchiorri C. Friction compensation techniques for tendon-driven robotic hands. Mechatronics. 2014;24(2):108-117. [Link] [DOI:10.1016/j.mechatronics.2013.12.006]
13. Lee DH, Park JH, Park SW, Baeg MH, Bae JH. KITECH-hand: A highly dexterous and modularized robotic hand. IEEE/ASME Transactions on Mechatronics. 2017;22(2):876-887. [Link] [DOI:10.1109/TMECH.2016.2634602]
14. Liu H, Meusel P, Seitz N, Willberg B, Hirzinger G, Jin MH, et al. The modular multisensory DLR-HIT-Hand. Mechanism and Machine Theory. 2007;42(5):612-625. [Link] [DOI:10.1016/j.mechmachtheory.2006.04.013]
15. Borboni A, Mor M, Faglia R. Gloreha—hand robotic rehabilitation: Design, mechanical model, and experiments. Journal of Dynamic Systems, Measurement, and Control. 2016;138(11):111003. [Link] [DOI:10.1115/1.4033831]
16. Leonardis D, Barsotti M, Loconsole C, Solazzi M, Troncossi M, Mazzotti C, et al. An EMG-controlled robotic hand exoskeleton for bilateral rehabilitation. IEEE Transactions on Haptics. 2015;8(2):140-151. [Link] [DOI:10.1109/TOH.2015.2417570]
17. Santello M, Bianchi M, Gabiccini M, Ricciardi E, Salvietti G, Prattichizzo D,et al. Hand synergies: Integration of robotics and neuroscience for understanding the control of biological and artificial hands. Physics of life reviews. 2016;17:1-23. [Link] [DOI:10.1016/j.plrev.2016.02.001]
18. Yoon D, Choi Y. Underactuated finger mechanism using contractible slider-cranks and stackable four-bar linkages. IEEE/ASME Transactions on Mechatronics. 2017;22(5):2046-2057. [Link] [DOI:10.1109/TMECH.2017.2723718]
19. Jones CL, Wang F, Morrison R, Sarkar N, Kamper DG. Design and development of the cable actuated finger exoskeleton for hand rehabilitation following stroke. IEEE/ASME Transactions on Mechatronics. 2014;19(1):131-140. [Link] [DOI:10.1109/TMECH.2012.2224359]
20. Kurita Y, Ono Y, Ikeda A, Ogasawara T. Human-sized anthropomorphic robot hand with detachable mechanism at the wrist. Mechanism and Machine Theory. 2011;46(1):53-66. [Link] [DOI:10.1016/j.mechmachtheory.2010.08.011]
21. Biggar S, Yao W. Design and evaluation of a soft and wearable robotic glove for hand rehabilitation. IEEE Transactions on Neural Systems and Rehabilitation Engineering. 2016;24(10):1071-1080. [Link] [DOI:10.1109/TNSRE.2016.2521544]
22. Heo P, Gu GM, Lee SJ, Rhee K, Kim J. Current hand exoskeleton technologies for rehabilitation and assistive engineering. International Journal of Precision Engineering and Manufacturing. 2012;13(5):807-824. [Link] [DOI:10.1007/s12541-012-0107-2]
23. Nycz CJ, Bützer T, Lambercy O, Arata J, Fischer GS, Gassert R. Design and characterization of a lightweight and fully portable remote actuation system for use with a hand exoskeleton. IEEE Robotics and Automation Letters. 2016;1(2):976-983. [Link] [DOI:10.1109/LRA.2016.2528296]
24. Zanotto D, Rosati G, Minto S, Rossi A. Sophia-3: A semiadaptive cable-driven rehabilitation device with a tilting working plane. IEEE Transactions on Robotics. 2014;30(4):974-979. [Link] [DOI:10.1109/TRO.2014.2301532]
25. MA Z, Ben-Tzvi P. RML glove - an exoskeleton glove mechanism with haptics feedback. IEEE/ASME Transactions on Mechatronics. 2015;20(2):641-652. [Link] [DOI:10.1109/TMECH.2014.2305842]
26. Jeong U, In HK, Cho KJ. Implementation of various control algorithms for hand rehabilitation exercise using wearable robotic hand. Intelligent Service Robotics. 2013;6(4):181-189. [Link] [DOI:10.1007/s11370-013-0135-5]
27. Chen J, Han D. The control of tendon-driven dexterous hands with joint simulation. Sensors (Basel). 2014;14(1):1723-1739. [Link] [DOI:10.3390/s140101723]
28. Ohta P, Valle L, King J, Low K, Yi J, Atkeson CG, et al. Design of a lightweight soft robotic arm using pneumatic artificial muscles and inflatable sleeves. Soft Robotics. 2018;5(2):204-215. [Link] [DOI:10.1089/soro.2017.0044]
29. Ohta P, Valle L, King J, Low K, Yi J, Atkeson CG, et al. Design of a lightweight soft robotic arm using pneumatic artificial muscles and inflatable sleeves. Soft Robotics. 2018;5(2):204-215. [Link] [DOI:10.1089/soro.2017.0044]
30. Xu P, Zhao XH, Li HG. Analysis of the transmission performance and kinematics simulation of 3-RRRT parallel manipulator. Journal of Tianjin University of Technology. 2009;(3). [Link]
31. Vignais N, Marin F. Modelling the musculoskeletal system of the hand and forearm for ergonomic applications. Computer Methods in Biomechanics and Biomedical Engineering. 2011;14(suppl 1):75-76. [Link] [DOI:10.1080/10255842.2011.592369]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author