Volume 19, Issue 9 (2019)                   Modares Mechanical Engineering 2019, 19(9): 2235-2245 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Toghroli E, Gandjalikhan Nassab S. Numerical analysis of inclined double pane windows with considering combined natural convection and radiation in filling gas. Modares Mechanical Engineering. 2019; 19 (9) :2235-2245
URL: http://journals.modares.ac.ir/article-15-22671-en.html
1- Mechanical Department, Engineering Faculty, Kerman Branch, Islamic Azad University, Kerman, Iran
2- Mechanical Engineering Department, Engineering Faculty, Shahid Bahonar University, Kerman, Iran , ganj110@uk.ac.ir
Abstract:   (1640 Views)
This study presents a new numerical analysis of thermal behavior and flow of filling gas in inclined double plane windows by considering radiation effects of fluid, as a gray, absorbing, emitting, and scattering medium. In recent years, the installation of inclined double pane windows from the vertical to horizontal sense, especially in the new architecture, is more used. The main goal is to verify the effect of window's inclination angle on the performance of double pane windows in decreasing the rate of heat transfer via this part of the building. The governing equations include the continuity, momentum, and energy, are discretized by using the finite volume method and they are solved with the SIMPLE algorithm. In order to compute the radiative term in the gas energy equation, the radiative transfer equation is solved numerically by the discrete ordinate method. Results are shown as contours of streamlines, isotherms, and distributions of horizontal and vertical components of velocity in the whole cavity of the window and filling gas in different incline angles. The results illustrated that by increasing in incline angle, the rate of flow vortices is decreased. The flow of gas is rotational and the recirculated flow inside the window breaks down to many smaller vortices at a specified inclination angle so it influences the amount of total heat transfer coefficient of the window.
Full-Text [PDF 1158 kb]   (146 Downloads)    

Received: 2018/07/2 | Accepted: 2019/02/7 | Published: 2019/09/1

References
1. Ismail KAR, Henrı́quez JR. Modeling and simulation of a simple glass window. Solar Energy Materials and Solar Cells. 2003;80(3):355-374. [Link] [DOI:10.1016/j.solmat.2003.08.010]
2. Korpela SA, Lee Y, Drummond JE. Heat transfer through a double pane window. Journal of Heat Transfer. 1982;104(3):539-544. [Link] [DOI:10.1115/1.3245127]
3. Aydin O. Determination of optimum air-layer thickness in double-pane windows. Energy and Buildings. 2000;32(3):303-308. [Link] [DOI:10.1016/S0378-7788(00)00057-8]
4. Aydın O. Conjugate heat transfer analysis of double pane windows. Building and Environment. 2006;41(2):109-116. [Link] [DOI:10.1016/j.buildenv.2005.01.011]
5. Ismail KAR, Salinas S C. Non-gray radiative convective conductive modeling of a double glass window with a cavity filled with a mixture of absorbing gases. International Journal of Heat and Mass Transfer. 2006;49(17-18):2972-2983. [Link] [DOI:10.1016/j.ijheatmasstransfer.2006.01.051]
6. Ismail KAR, Salinas CT, Henriquez JR. Comparison between PCM filled glass windows and absorbing gas filled windows. Energy and Buildings. 2008;40(5):710-719. [Link] [DOI:10.1016/j.enbuild.2007.05.005]
7. Arıcı M, Karabay H. Determination of optimum thickness of double-glazed windows for the climatic regions of Turkey. Energy and Buildings. 2010;42(10):1773-1778. [Link] [DOI:10.1016/j.enbuild.2010.05.013]
8. Noh-Pat F, Xamán J, Álvarez G, Chávez Y, Arce J. Thermal analysis for a double glazing unit with and without a solar control film (SnS-CuxS) for using in hot climates. Energy and Buildings. 2011;43(2-3):704-712. [Link] [DOI:10.1016/j.enbuild.2010.11.015]
9. Xamán J, Pérez-Nucamendi C, Arce J, Hinojosa J, Álvarez G, Zavala-Guillén I. Thermal analysis for a double pane window with a solar control film for using in cold and warm climates. Energy and Buildings. 2014;76:429-439. [Link] [DOI:10.1016/j.enbuild.2014.03.015]
10. Xamán J, Olazo-Gómez Y, Zavala-Guillén I, Hernández-Pérez I, Aguilar JO, Hinojosa JF. Thermal evaluation of a room coupled with a double glazing window with/without a solar control film for Mexico. Applied Thermal Engineering. 2017;110:805-820. [Link] [DOI:10.1016/j.applthermaleng.2016.08.156]
11. Arıcı M, Kan M. An investigation of flow and conjugate heat transfer in multiple pane windows with respect to gap width, emissivity and gas filling. Renewable Energy. 2015;75:249-256. [Link] [DOI:10.1016/j.renene.2014.10.004]
12. Arıcı M, Karabay H, Kan M. Flow and heat transfer in double, triple and quadruple pane windows. Energy and Buildings. 2015;86:394-402. [Link] [DOI:10.1016/j.enbuild.2014.10.043]
13. González-Julián E, Xamán J, Moraga NO, Chávez Y, Zavala-Guillén I, Simá E. Annual thermal evaluation of a double pane window using glazing available in the Mexican market. Applied Thermal Engineering. 2018;143:100-111. [Link] [DOI:10.1016/j.applthermaleng.2018.07.053]
14. Aguilar JO, Xamán J, Olazo-Gómez Y, Hernández-López I, Becerra G, Jaramillo OA. Thermal performance of a room with a double glazing window using glazing available in Mexican market. Applied Thermal Engineering. 2017;119:505-515. [Link] [DOI:10.1016/j.applthermaleng.2017.03.083]
15. Cuce E. Accurate and reliable U-value assessment of argon-filled double glazed windows: A numerical and experimental investigation. Energy and Buildings. 2018;171:100-106. [Link] [DOI:10.1016/j.enbuild.2018.04.036]
16. Sadooghi P, Kherani NP. Thermal analysis of triple and quadruple windows using partitioning radiant energy veils™ with different physical and optical properties. Solar Energy. 2018;174:1163-1168. [Link] [DOI:10.1016/j.solener.2018.07.034]
17. Tükel M, Mumcuoğlu K, Arıcı M, Karabay H. Analysis of fluid flow and heat transfer characteristics in multiple glazing roofs with a special emphasis on the thermal performance. Applied Thermal Engineering. 2019;148:694-703. [Link] [DOI:10.1016/j.applthermaleng.2018.11.089]
18. Zhang C, Gang W, Wang J, Xu X, Du Q. Numerical and experimental study on the thermal performance improvement of a triple glazed window by utilizing low-grade exhaust air. Energy. 2019;167:1132-1143. [Link] [DOI:10.1016/j.energy.2018.11.076]
19. Modest MF. Radiative heat transfer. Cambridge MA: Academic Press; 2013. [Link] [DOI:10.1016/B978-0-12-386944-9.50023-6]
20. Patankar S. Numerical heat transfer and fluid flow. Boca Raton: CRC Press; 1980. [Link]
21. Lari K, Baneshi M, Gandjalikhan Nassab SA, Komiya A, Maruyama S. Combined heat transfer of radiation and natural convection in a square cavity containing participating gases. International Journal of Heat and Mass Transfer. 2011;54(23-24):5087-5099. [Link] [DOI:10.1016/j.ijheatmasstransfer.2011.07.026]
22. Mahapatra SK, Dandapat BK, Sarkar A. Analysis of combined conduction and radiation heat transfer in presence of participating medium by the development of hybrid method. Journal of Quantitative Spectroscopy and Radiative Transfer. 2006;102(2):277-292. [Link] [DOI:10.1016/j.jqsrt.2006.02.015]
23. Vivek V, Sharma AK, Balaji C. Interaction effects between laminar natural convection and surface radiation in tilted square and shallow enclosures. International Journal of Thermal Sciences. 2012;60:70-84. [Link] [DOI:10.1016/j.ijthermalsci.2012.04.021]
24. Bajorek SM, Lloyd JR. Experimental investigation of natural convection in partitioned enclosures. Journal of Heat Transfer. 1982;104(3):527-532. [Link] [DOI:10.1115/1.3245125]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author