Volume 19, Issue 2 (February 2019)                   Modares Mechanical Engineering 2019, 19(2): 505-513 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Rahmatabadi D, Shahmirzaloo A, Farahani M, Hashemi R. Characterization of the Plastic and Elastic Properties of Aluminum Sheet Produced by CRB Process via DIC Method. Modares Mechanical Engineering 2019; 19 (2) :505-513
URL: http://mme.modares.ac.ir/article-15-22760-en.html
1- Mechanical Engineering School, Engineering College, University of Tehran, Tehran, Iran
2- Mechanical Engineering School, Engineering College, University of Tehran, Tehran, Iran , mrfarahani@ut.ac.ir
3- Mechanical Engineering Department, Iran University of Science and Technology, Tehran, Iran
Abstract:   (4417 Views)
The cold roll bonding (CRB) is a solid state welding process for bonding similar and dissimilar metals. The use of materials produced by the CRB method for different applications and the prediction of their behavior in simulation software requires the complete and accurate identification of their mechanical properties. Digital image correlation (DIC) is a powerful non-contact method for measuring the field of material deformation. Recently, the DIC method has been developed and widely used in various studies due to its advantages. In this research, two-layered aluminum alloy 1050 was produced via CRB process with applying 50% reduction of thickness at ambient temperature and then using the 2D-DIC system to extract distribution of the strain field during the uniaxial tensile test at rolling direction. Strain in two directions of length and width was calculated, using DIC and strain in terms of thickness, effective strain, and anisotropy coefficient, using plasticity relationships. Moreover, for the first time, using the virtual field methods (VFM), elastic and plastic parameters such as elastic modulus, Poisson ratio, strength coefficient, strain hardening exponent, and yield stress were calculated. The results showed that the strength and microhardness were significantly increased due to the work hardening and increasing the density of dislocations, and the elongation and strain hardening exponent were reduced. The strength for the two-layered aluminum was 113MPa, which improved more than three times of the initial aluminum. Also, changes in the elastic parameters were very small and the modulus of elasticity for the primary aluminum and two-layered aluminum was 69.3 and 70GPa, respectively.
Full-Text [PDF 804 kb]   (3012 Downloads)    
Article Type: Original Research | Subject: Welding
Received: 2018/07/5 | Accepted: 2018/10/24 | Published: 2019/02/2

References
1. Rahmatabadi D, Mohammadi B, Hashemi R, Shojaee T. Experimental investigation of plane stress fracture toughness for Al/Cu/Al multilayer produced by Cold Roll Bonding method. Modares Mechanical Engineering. 2017;17(5):166-174. [Persian] [Link]
2. Rahmatabadi D, Hashemi R. Experimental investigation of fracture surfaces and mechanical properties of AA1050 aluminum produced by accumulative roll bonding process. Modares Mechanical Engineering. 2016;16(10):305-312. [Persian] [Link]
3. Zhang W, Bay N. Influence of different surface preparation methods on the bond formation in cold pressure welding. Eurojoin 2: 2nd European Conference on Joining Technology Florence, 16-18 May, 1994, Florence, Italy. Florence: Italian Institute of Welding; 1994. p. 379-388. [Link]
4. Wright PK, Snow DA, Tay CK. Interfacial conditions and bond strength in cold pressure welding by rolling. Metals Technology. 1978;5(1):24-31. [Link] [DOI:10.1179/mt.1978.5.1.24]
5. Pan D, Gao K, Yu J. Cold roll bonding of bimetallic sheets and strips. Materials Science and Technology. 1989;5(9):934-939. [Link] [DOI:10.1179/mst.1989.5.9.934]
6. Danesh Manesh H, Karimi Taheri A. Study of mechanisms of cold roll welding of aluminium alloy to steel strip. Materials Science and Technology. 2004;20(8):1064-1068. [Link] [DOI:10.1179/174328413X13789824293461]
7. Mohamed HA, Washburn J. Mechanism of solid state pressure welding. Welding Journal. 1975;54:302s-310s. [Link]
8. Rahmatabadi D, Tayyebi M, Hashemi R. Investigation of mechanical properties, fractography and microstructure of layered Al/Cu composite produced by cold roll bonding. Science and Technology of Composites. 2017;4(3):311-318. [Persian] [Link]
9. Rahmatabadi D, Hashemi R. Experimental investigation of formability of aluminum sheets produced by cold roll bonding process used by Nakazima test. Modares Mechanical Engineering. 2017;17(3):451-454. [Persian] [Link]
10. Rahmatabadi D, Hashemi R, Mohammadi B, Shojaee T. Experiment investigation of plane stress fracture toughness for aluminum sheets produced by cold roll bonding process. Modares Mechanical Engineering. 2017;17(2):101-108. [Persian] [Link]
11. Lukaschkin ND, Borissow AP, Erlikh AI. The system analysis of metal forming technique in welding processes. Journal of Materials Processing Technology. 1997;66(1-3):264-269. [Link] [DOI:10.1016/S0924-0136(96)02538-1]
12. Wu HY, Lee Sh, Wang JY. Solid-state bonding of iron-based alloys, steel-brass, and aluminum alloys. Journal of Materials Processing Technology. 1998;75(1-3):173-179. [Link] [DOI:10.1016/S0924-0136(97)00323-3]
13. Quadir MZ, Wolz A, Hoffman M, Ferry M. Influence of processing parameters on the bond toughness of roll-bonded aluminium strip. Scripta Materialia. 2008;58(11):959-962. [Link] [DOI:10.1016/j.scriptamat.2008.01.022]
14. Abbasi M, Toroghinejad MR. Effects of processing parameters on the bond strength of Cu/Cu roll-bonded strips. Journal of Materials Processing Technology. 2010;210(3):560-563. [Link] [DOI:10.1016/j.jmatprotec.2009.11.003]
15. Eizadjou M, Danesh Manesh H, Janghorban K. Investigation of roll bonding between aluminum alloy strips. Materials and Design. 2008;29(4):909-913. [Link] [DOI:10.1016/j.matdes.2007.03.020]
16. Jamaati R, Toroghinejad MR. Investigation of the parameters of the cold roll bonding (CRB) process. Materials Science and Engineering A. 2010;527(9):2320-2326. [Link] [DOI:10.1016/j.msea.2009.11.069]
17. Danesh Manesh H, Karimi Taheri A. The effect of annealing treatment on mechanical properties of aluminum clad steel sheet. Materials and Design. 2003;24(8):617-622. [Link] [DOI:10.1016/S0261-3069(03)00135-3]
18. Movahedi M, Madaah-Hosseini HR, Kokabi AH. The influence of roll bonding parameters on the bond strength of Al-3003/Zn soldering sheets. Materials Science and Engineering A. 2008;487(1-2):417-423. [Link] [DOI:10.1016/j.msea.2007.10.019]
19. Lu C, Tieu K, Wexler D. Significant enhancement of bond strength in the accumulative roll bonding process using nano-sized SiO2 particles. Journal of Materials Processing Technology. 2009;209(10):4830-4834. [Link] [DOI:10.1016/j.jmatprotec.2009.01.003]
20. Alizadeh M, Paydar MH. Study on the effect of presence of TiH2 particles on the roll bonding behavior of aluminum alloy strips. Materials and Design. 2009;30(1):82-86. [Link] [DOI:10.1016/j.matdes.2008.04.058]
21. Jamaati R, Toroghinejad MR. Effect of friction, annealing conditions and hardness on the bond strength of Al/Al strips produced by cold roll bonding process. Materials and Design. 2010;31(9):4508-4513. [Link] [DOI:10.1016/j.matdes.2010.04.022]
22. Tsuji N, Saito Y, Utsunomiya H, Tanigawa S. Ultra-fine grained bulk steel produced by accumulative roll-bonding (ARB) process. Scripta Materialia. 1999;40(7):795-800. [Link] [DOI:10.1016/S1359-6462(99)00015-9]
23. Shaarbaf M, Toroghinejad MR. Nano-grained copper strip produced by accumulative roll bonding process. Materials Science and Engineering A. 2008;473(1-2):28-33. [Link] [DOI:10.1016/j.msea.2007.03.065]
24. Eizadjou M, Kazemi Talachi A, Danesh Manesh H, Shakur Shahabi H, Janghorban K. Investigation of structure and mechanical properties of multi-layered Al/Cu composite produced by accumulative roll bonding (ARB) process. Composites Science and Technology. 2008;68(9):2003-2009. [Link] [DOI:10.1016/j.compscitech.2008.02.029]
25. Yang D, Cizek P, Hodgson P, Wen C. Ultrafine equiaxed-grain Ti/Al composite produced by accumulative roll bonding. Scripta Materialia. 2010;62(5):321-324. [Link] [DOI:10.1016/j.scriptamat.2009.11.036]
26. Wu K, Chang H, Maawad E, Gan WM, Brokmeier HG, Zheng MY. Microstructure and mechanical properties of the Mg/Al laminated composite fabricated by accumulative roll bonding (ARB). Materials Science and Engineering A. 2010;527(13-14):3073-3078. [Link] [DOI:10.1016/j.msea.2010.02.001]
27. Naseri M, Reihanian M, Borhani E. Bonding behavior during cold roll-cladding of tri-layered Al/brass/Al composite. Journal of Manufacturing Processes. 2016;24(Part 1):125-137. [Link] [DOI:10.1016/j.jmapro.2016.08.008]
28. Nguyen VT, Kwon SJ, Kwon OH, Kim YS. Mechanical properties identification of sheet metals by 2D-digital image correlation method. Procedia Engineering. 2017;184:381-389. [Link] [DOI:10.1016/j.proeng.2017.04.108]
29. Peters WH, Ranson WF. Digital imaging techniques in experimental stress analysis. Optical Engineering. 1982;21(3):213427. [Link] [DOI:10.1117/12.7972925]
30. Liu S, Chao YJ. Determination of global mechanical response of friction stir welded plates using local constitutive properties. Modelling and Simulation in Materials Science and Engineering. 2004;13(1):1-8. [Link] [DOI:10.1088/0965-0393/13/1/001]
31. Feistauer EE, Bergmann LA, Barreto LS, Dos Santos JF. Mechanical behaviour of dissimilar friction stir welded tailor welded blanks in Al-Mg alloys for marine applications. Materials and Design. 2014;59:323-332. [Link] [DOI:10.1016/j.matdes.2014.02.042]
32. Foehring D, Chew HB, Lambros J. Characterizing the tensile behavior of additively manufactured Ti-6Al-4V using multiscale digital image correlation. Materials Science and Engineering A. 2018;724:536-546. [Link] [DOI:10.1016/j.msea.2018.03.091]
33. Sánchez-Arévalo FM, Pulos G. Use of digital image correlation to determine the mechanical behavior of materials. Materials Characterization. 2008;59(11):1572-1579. [Link] [DOI:10.1016/j.matchar.2008.02.002]
34. Orell O, Vuorinen J, Jokinen J, Kettunen H, Hytönen P, Turunen J, et al. Characterization of elastic constants of anisotropic composites in compression using digital image correlation. Composite Structures. 2018;185:176-185. [Link] [DOI:10.1016/j.compstruct.2017.11.008]
35. Saranath KM, Ramji M. Local zone wise elastic and plastic properties of electron beam welded Ti-6Al-4V alloy using digital image correlation technique: A comparative study between uniform stress and virtual fields method. Optics and Lasers in Engineering. 2015;68:222-234. [Link] [DOI:10.1016/j.optlaseng.2015.01.005]
36. Rahmatabadi D, Tayyebi M, Hashemi R, Faraji Gh. Microstructure and mechanical properties of Al/Cu/Mg laminated composite sheets produced by the ARB proces. International Journal of Minerals Metallurgy and Materials. 2018;25(5):564-572. [Link] [DOI:10.1007/s12613-018-1603-x]
37. Rahmatabadi D, Hashemi R, Mohammadi B, Shojaee T. Experimental evaluation of the plane stress fracture toughness for ultra-fine grained aluminum specimens prepared by accumulative roll bonding process. Materials Science and Engineering A. 2017;708:301-310. [Link] [DOI:10.1016/j.msea.2017.09.085]
38. Rahmatabadi D, Hashemi R. Experimental evaluation of forming limit diagram and mechanical properties of nano/ultra-fine grained aluminum strips fabricated by accumulative roll bonding. International Journal of Materials Research. 2017;108(12):1036-1044. [Link] [DOI:10.3139/146.111566]
39. Rahmatabadi D, Tayyebi M, Hashemi R, Eghbali B. Investigation of mechanical properties and microstructure for Al/Cu/SiC composite produced by Cross Accumulative Roll Bonding process. Modares Mechanical Engineering. 2017;17(7):180-184. [Persian] [Link]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.