Volume 19, Issue 1 (January 2019)                   Modares Mechanical Engineering 2019, 19(1): 85-93 | Back to browse issues page

XML Persian Abstract Print


1- Mechanical Engineering Department, Mechanical Engineering Faculty, Khomeinishahr Branch, Islamic Azad University, Isfahan, Iran
2- Mechanical Engineering Department, Mechanical Engineering Faculty, Khomeinishahr Branch, Islamic Azad University, Isfahan, Iran , heidari@iaukhsh.ac.ir
3- Materials Science & Engineering Department, Materials Science & Engineering Faculty, Shiraz University of Technology, Fars, Iran
Abstract:   (6653 Views)
Determining yield and tensile strengths is of utmost importance for engineers in identifying and examining the mechanical properties of pipelines. However, performing a tensile test requires sampling and is, therefore, time-consuming. Thus, it is essential to use an accessible and convenient parameter in order to investigate the relationship between yield and tensile strengths. Hardness can prove to be the parameter we are seeking. The present study used 10 gas transmission pipelines (grade X70, straight seam welded, outer diameter: 1422.2mm, and thickness: 15.9mm) in order to perform chemical analyses, impact tests (base metal, weld, HAZ), microstructural examinations, using an optical microscope, indentation hardness tests (base metal, weld, HAZ), and tensile tests. The minimum, maximum, mean, probability density function, and standard deviation of hardness, yield strength in base metal, and tensile strength in weld and base metal were obtained and compared with API 5L standard. The data were used to determine the relationship between strength and hardness. The results prove to be a reliable measure in order to estimate the strength of base metal in pipelines, which reduces the costs and the time needed in order to achieve an optimal strength.
Full-Text [PDF 743 kb]   (3421 Downloads)    
Article Type: Original Research | Subject: Aerospace Structures
Received: 2018/07/19 | Accepted: 2018/09/30 | Published: 2019/01/1

References
1. Leighty W, Holloway J, Merer R, Somerday B, San Marchi C, Keith G, et al. Compressorless hydrogen transmission pipelines deliver large-scale stranded renewable energy at competitive cost. 16th World Hydrogen Energy Conference (WHEC 16), Lyon, France, 13-16 June 2006. Lyon: WHEC 16; 2006. [Link]
2. Han Y, Shi J, Xu L, Cao WQ, Dong H. Effects of Ti addition and reheating quenching on grain refinement and mechanical properties in low carbon medium manganese martensitic steel. Materials & Design. 2012;34:427-434. [Link] [DOI:10.1016/j.matdes.2011.08.015]
3. Hajibagheri HR, Heidari A, Amini R. An experimental investigation of the nature of longitudinal cracks in oil and gas transmission pipelines. Journal of Alloys and Compounds. 2018;741:1121-1129. [Link] [DOI:10.1016/j.jallcom.2017.12.311]
4. Verlinden B, Driver J, Samajdar I, Doherty RD. Thermo-mechanical processing of metallic materials. Amsterdam: Elsevier; 2007. [Link]
5. Rakhsh Khorshid M, Hashemi SH, Monajatizadeh H. The use of hot torsion testing for determination of critical temperatures of API X65 steel. Modares Mechanical Engineering. 2015;14(13):291-296. [Persian] [Link]
6. Gladman T. The physical metallurgy of microalloyed steels. 615th Volume. Michigan: Institute of Materials; 1997. [Link]
7. Calvo J, Collins L, Yue S. Design of microalloyed steel hot rolling schedules by torsion testing: Average schedule vs. real schedule. ISIJ International. 2010;50(8):1193-1199. [Link] [DOI:10.2355/isijinternational.50.1193]
8. Calvo J, Jung IH, Elwazri AM, Bai D, Yue S. Influence of the chemical composition on transformation behaviour of low carbon microalloyed steels. Materials Science and Engineering A. 2009;520(1-2):90-96. [Link] [DOI:10.1016/j.msea.2009.05.027]
9. American Petroleum Institute. API 5L-14, Standard specification for line pipe [Internet]. Washington DC: The American Petroleum Institute; 2014 [cited 2018 July 1]. Available from: http://nimaazmoon.com/download/api/API-5L-2013.pdf [Link]
10. Rakhsh Khorshid M, Hashemi SH. Investigation of cooling rate on continuous cooling transformation behavior of API X65 pipeline steel. Modares Mechanical Engineering. 2013;13(8):57-67. [Persian] [Link]
11. Reip CP, Shanmugam S, Misra RDK. High strength microalloyed CMn (V-Nb-Ti) and CMn (V-Nb) pipeline steels processed through CSP thin-slab technology: Microstructure, precipitation and mechanical properties. Materials Science and Engineering A. 2006;424(1-2):307-317. [Link] [DOI:10.1016/j.msea.2006.03.026]
12. Kiefner JF, Trench CJ. Oil pipeline characteristics and risk factors: Illustrations from the decade of construction [Internet]. Washington D C: American Petroleum Institute; 2001 [cited 2018 July 1]. Available from: https://www.api.org/~/media/Files/Oil-and-Natural-Gas/PPTS/Other-Files/decadefinal.pdf [Link]
13. Sharma SK, Maheshwari S. A review on welding of high strength oil and gas pipeline steels. Journal of Natural Gas Science and Engineering. 2017;38:203-217. [Link] [DOI:10.1016/j.jngse.2016.12.039]
14. Zhu Z, Kuzmikova L, Li H, Barbaro F. The effect of chemical composition on microstructure and properties of intercritically reheated coarse-grained heat-affected zone in X70 steels. Metallurgical and Materials Transactions B. 2014;45(1):229-235. [Link] [DOI:10.1007/s11663-013-0008-5]
15. Hashemi SH. Strength-hardness statistical correlation in API X65 steel. Materials Science and Engineering A. 2011;528(3):1648-1655. [Link] [DOI:10.1016/j.msea.2010.10.089]
16. Pavlina EJ, Van Tyne CJ. Correlation of yield strength and tensile strength with hardness for steels. Journal of Materials Engineering and Performance. 2008;17(6):888-893. [Link] [DOI:10.1007/s11665-008-9225-5]
17. Hwang B, Kim YM, Lee S, Kim NJ, Ahn SS. Correlation of microstructure and fracture properties of API X70 pipeline steels. Metallurgical and Materials Transactions A. 2005;36(3):725-739. https://doi.org/10.1007/s11661-005-1004-4 [Link] [DOI:10.1007/s11661-005-0188-y]
18. Hashemi SH, Mohammadyani D, Pouranvari M, Mousavizadeh SM. On the relation of microstructure and impact toughness characteristics of DSAW steel of grade API X70. Fatigue & Fracture of Engineering Materials & Structures. 2009;32(1):33-40. [Link] [DOI:10.1111/j.1460-2695.2008.01312.x]
19. Hashemi SH, Sedghi S, Soleymani V, Mohammadyani D. CTOA levels of welded joint in API X70 pipe steel. Engineering Fracture Mechanics. 2012;82:46-59. [Link] [DOI:10.1016/j.engfracmech.2011.11.022]
20. Hashemi SH. Apportion of charpy energy in API 5L grade X70 pipeline steel. International Journal of Pressure Vessels and Piping. 2008;85(12):879-884. [Link] [DOI:10.1016/j.ijpvp.2008.04.011]
21. Dehghan Manshadi A, Dippenaar RJ. The behavior of precipitates during hot-deformation of low-manganese, titanium-added pipeline steels. Metallurgical and Materials Transactions A Physical Metallurgy and Materials Science. 2010;41(13):3291-3296. [Link] [DOI:10.1007/s11661-010-0515-9]
22. Schambron T, Phillips AW, O'brien DM, Burg J, Pereloma EV, Killmore CC, et al. Thermomechanical processing of pipeline steels with a reduced Mn content. ISIJ International. 2009;49(2):284-292. [Link] [DOI:10.2355/isijinternational.49.284]
23. ASTM. ASTM E415-15: standard test method for analysis of carbon and low-alloy steel by spark atomic emission spectrometry [Internet]. West Conshohocken PA: ASTM International; 2015 [cited 2018 July 1]. Available from: https://www.astm.org/DATABASE.CART/HISTORICAL/E415-15.htm [Link]
24. ASTM. ASTM E3-11: Standard guide for preparation of metallographic specimens [Internet]. West Conshohocken PA: ASTM International; 2011 [cited 2018 July 1]. Available from: https://wenku.baidu.com/view/b7ac1006a6c30c2259019eb2.html [Link]
25. ASTM. ASTM E407-07: Standard practice for microetching metals and alloys [Internet]. West Conshohocken PA: ASTM International; 2015 [cited 2018 July 1]. Available from: https://www.astm.org/DATABASE.CART/HISTORICAL/E407-07R15.htm [Link]
26. ASTM. ASTM E92-82: Standard test method for vickers hardness of metallic materials [Internet]. West Conshohocken PA: ASTM International; 2003 [cited 2018 July 1]. Available from: https://www.astm.org/DATABASE.CART/HISTORICAL/E92-82R03.htm [Link]
27. ASTM. ASTM E23: Standard test method for notched bar impact testing of metallic materials -- E-Learning Course [Internet]. West Conshohocken PA: ASTM International; 2009 [cited 2018 July 1]. Available from: https://www.astm.org/TRAIN/filtrexx40.cgi?+-P+ID+224+traindetail.frm [Link]
28. Mohtadi Bonab M, Eskandari M, Karimdadashi R, Szpunar JA. Effect of different microstructural parameters on hydrogen induced cracking in an API X70 pipeline steel. Metals and Materials International. 2017;23(4):726-735. [Link] [DOI:10.1007/s12540-017-6691-z]
29. Zhang X, Gao H. A study of impact toughness of intercritically reheated coarse-grain heat effected zone of two type X80 grade pipeline steel. WSE2011. 2011:101-104. [Link]
30. Du Pont JN, Michael JR, Newbury BD. Welding metallurgy of alloy HR-160. INIS. 1999;30(41):30047132. [Link]
31. ASTM. ASTM A370-17a: Standard test methods and definitions for mechanical testing of steel products [Internet]. West Conshohocken PA: ASTM International; 2017 [cited 2018 July 1]. Available from: https://www.astm.org/Standards/A370 [Link]
32. Budynas RG, Keith Nisbett J. Shigley's mechanical engineering design. New York City: Mc Graw-Hill; 2008. [Link]
33. ISO. ISO 6507-1: Metallic materials -- vickers hardness test -- part 1: Test method [Internet]. Geneva: International Organization for Standardization; 2005 [cited 2018 July 1]. Available from: https://www.iso.org/standard/37746.html [Link]
34. Birch K. Measurement good practice No. 36: Estimating uncertainties in testing, an intermediate guide to estimating and reporting uncertainty of measurement in testing [Internet]. Teddington: British Measurement and Testing Association; 2003 [cited 2018 July 1]. Available from: https://www.sicyon.com/resources/library/pdf/GPG36.pdf [Link]

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.