Volume 19, Issue 8 (2019)                   Modares Mechanical Engineering 2019, 19(8): 2067-2077 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Shojaee T, Mohammadi B, Madoliat R. Postbuckling Analysis of Laminated Composites with Cutout Using Experimental, Numerical, and Finite Strip Methods. Modares Mechanical Engineering. 2019; 19 (8) :2067-2077
URL: http://journals.modares.ac.ir/article-15-23361-en.html
1- School of Mechanical Engineering, Iran University of Science & Technology, Tehran, Iran
2- School of Mechanical Engineering, Iran University of Science & Technology, Tehran, Iran , bijan_mohammadi@iust.ac.ir
Abstract:   (258 Views)

The optimal design of multilayer substrates containing the cutout under compression is very important to achieve maximum buckling resistance in comparison with structural weight, especially in aerospace structures. In this study, buckling and post-buckling behavior of composite laminated plates with orthogonal and symmetrical layup containing the cutout with different diameters has been investigated experimentally, semi-analytically, and numerically. To study the buckling of the composite plate with cutout semi-analytically, a finite strip method is developed. A finite element method was used for numerical analysis. The required material parameters for modeling were obtained from standard tests. The results of the current study show that the size of diameter of cutout does not have considerable effect on elastic rigidity of plate, but the buckling load significantly decreases by increasing cutout diameter. Also, buckling load and elastic rigidity of plate are considerably increased by increasing the number of composite layers. The thickness of plate has more effect on buckling load than the diameter of hole. Studies show that there is a good match between the results of buckling behavior derived from semi-analytical and finite element methods with experimental results.

Full-Text [PDF 1102 kb]   (42 Downloads)    

Received: 2018/07/23 | Accepted: 2019/01/30 | Published: 2019/08/12

1. Prusty BG, Satsangi SK. Finite element buckling analysis of laminated composite stiffened shells. International Journal of Crashworthiness. 2001;6(4):471-484. [Link] [DOI:10.1533/cras.2001.0191]
2. Ho-Huu V, Do-Thi TD, Dang-Trung H, Vo-Duy T, Nguyen-Thoi T. Optimization of laminated composite plates for maximizing buckling load using improved differential evolution and smoothed finite element method. Composite Structures. 2016;146:132-147. [Link] [DOI:10.1016/j.compstruct.2016.03.016]
3. Muc A, Gurba W. Genetic algorithms and finite element analysis in optimization of composite structures. Composite Structures. 2001;54(2-3):275-281. [Link] [DOI:10.1016/S0263-8223(01)00098-8]
4. Yusuff S. Large deflection theory for orthotropic rectangular plates subjected to edge compression. Journal Application of Mechanics. 1952;19:446-452. [Link]
5. Coan JM. Large-deflection theory for plates with small initial curvature loaded in edge compression. Journal of Applied Mechanics Transactions ASME. 1951;18:143-151. [Link]
6. Dawe DJ, Tan D. Finite strip buckling and free vibration analysis of stepped rectangular composite laminated plates. International Journal for Numerical Methods in Engineering. 1999;46(8):1313-1334. https://doi.org/10.1002/(SICI)1097-0207(19991120)46:8<1313::AID-NME756>3.0.CO;2-K [Link] [DOI:10.1002/(SICI)1097-0207(19991120)46:83.0.CO;2-K]
7. Ovesy HR, Loughlan J, Assaee H. The compressive post-local bucking behaviour of thin plates using a semi-energy finite strip approach. Thin Walled Structures. 2004;42(3):449-474. [Link] [DOI:10.1016/S0263-8231(03)00106-X]
8. Assaee H, Hajikazemi M, Ovesy HR. The effect of anisotropy on post-buckling behavior of laminated plates using semi-energy finite strip method. Composite Structures. 2012;94(5):1880-1885. [Link] [DOI:10.1016/j.compstruct.2012.01.011]
9. Assaee H, Ovesy HR, Hajikazemi M. A semi-energy finite strip non-linear analysis of imperfect composite laminates subjected to end-shortening. Thin Walled Structures. 2012;60:46-53. [Link] [DOI:10.1016/j.tws.2012.06.011]
10. Ghannadpour SAM, Ovesy HR, Zia Dehkordi E. An exact finite strip for the calculation of initial post-buckling stiffness of shear-deformable composite laminated plates. Composite Structures. 2014;108:504-513. [Link] [DOI:10.1016/j.compstruct.2013.09.049]
11. Jain P, Kumar A. Postbuckling response of square laminates with a central circular/elliptical cutout. Composite Structures. 2004;65(2):179-185. [Link] [DOI:10.1016/j.compstruct.2003.10.014]
12. Kumar D, Singh SB. Effects of boundary conditions on buckling and postbuckling responses of composite laminate with various shaped cutouts. Composite Structures. 2010;92(3):769-779. [Link] [DOI:10.1016/j.compstruct.2009.08.049]
13. Noor AK, Peters JM. Buckling and postbuckling analyses of laminated anisotropic structures. International Journal for Numerical Methods in Engineering. 1989;27(2):383-401. [Link] [DOI:10.1002/nme.1620270211]
14. Köllner A, Völlmecke C. Buckling and postbuckling behavior of delaminated composite struts. International Journal for Computational Methods in Engineering Science and Mechanics. 2017;18(1):25-33. [Link] [DOI:10.1080/15502287.2016.1276340]
15. Sajjadi SH, Salimi Majd D, Ostad Ahmad Ghorabi MJ. Development of a brittle fracture criterion for prediction of crack propagation path under general mixed mode loading. Engineering Fracture Mechanics. 2016;155:36-48. [Link] [DOI:10.1016/j.engfracmech.2016.01.015]
16. Lesiuk G, Kucharski P, Correia JAFO, De Jesus AMP, Rebelo C, Simões Da Silva L. Mixed mode (I+II) fatigue crack growth in puddle iron. Engineering Fracture Mechanics. 2017;185:175-192. [Link] [DOI:10.1016/j.engfracmech.2017.05.002]
17. Farrokhabadi A, Naghdi Nasab M. Micromechanical study of fibre- matrix debonding and matrix cracking using cohesive zone model and extended finite element method. Journal of Science and Technology of Composites. 2016;3(1):21-30. [Persian] [Link]
18. Mohammadi B, Salimi Majd D, Ali Bakhshi MH. Analysis of composite skin/stringer debonding and failure under static loading using cohesive zone model. Modares Mechanical Engineering. 2014;14(10):17-25. [Persian] [Link]
19. Azimzadeh Kalkhoran V, Salimi Majd D, Mohammadi B. Fatigue life prediction for adhesively bonded root joint of composite wind turbine blade using cohesive zone approach. In: Attaf B, editor. Recent advances in composite materials for wind turbine blades. Unknown City: The World Academic Publishing; 2013. pp. 221-232. [Link]
20. Heidari M, Salimi Majd D, Mohammadi B. Failure analysis of composite wing adhesive joints using 3D cohesive interface element. Journal of Science and Technology of Composites. 2015;2(2):31-40. [Persian] [Link]
21. Bhardwaj HK, Vimal J, Sharma AK. Study of free vibration analysis of laminated composite plates with triangular cutouts. Engineering Solid Mechanics. 2015;3(1):43-50. [Link] [DOI:10.5267/j.esm.2014.11.002]
22. Lorenzini G, Helbig D, Real MDV, Dos Santos ED, Isoldi LA, Rocha LAO. Computational modeling and constructal design method applied to the mechanical behavior improvement of thin perforated steel plates subject to buckling. Journal of Engineering Thermophysics. 2016;25(2):197-215. [Link] [DOI:10.1134/S1810232816020053]
23. Madenci E, Barut A. Pre- and postbuckling response of curved, thin, composite panels with cutouts under compression. International Journal for Numerical Methods in Engineering. 1994;37(9):1499-1510. [Link] [DOI:10.1002/nme.1620370906]
24. Arbelo MA, Herrmann A, Castro SGP, Khakimova R, Zimmermann R, Degenhardt R. Investigation of buckling behavior of composite shell structures with cutouts. Applied Composite Materials. 2015;22(6):623-636. [Link] [DOI:10.1007/s10443-014-9428-x]
25. Heidari Rarani M, Khalkhali Sharifi SS, Shokrieh MM. Effect of ply stacking sequence on buckling behavior of E-glass/epoxy laminated composites. Computational Materials Science. 2014;89:89-96. [Link] [DOI:10.1016/j.commatsci.2014.03.017]
26. Ghannadpour SAM, Ovesy HR, Zia Dehkordi E. Buckling and post-buckling behaviour of moderately thick plates using an exact finite strip. Computers & Structures. 2015;147:172-180. [Link] [DOI:10.1016/j.compstruc.2014.09.013]
27. Shojaee T, Mohammadi B, Madoliat R, Salimi Majd D. Development of a finite strip method for efficient prediction of buckling and post-buckling in composite laminates containing a cutout with/without stiffener. Composite Structures. 2019;210:538-552. [Link] [DOI:10.1016/j.compstruct.2018.11.007]
28. Taheri Behrooz F, Omidi M, Shokrieh MM. Experimental and numerical examination of the effect of geometrical imperfection on buckling load in axially compressed composites cylinder with and without cutout. Modares Mechanical Engineering. 2016;16(6):367-377. [Persian] [Link]
29. Taheri Behrooz F, Omidi M, Shokrieh MM. Experimental and numerical investigation of buckling behavior of composite cylinders with cutout. Thin Walled Structures. 2017;116:136-144. [Link] [DOI:10.1016/j.tws.2017.03.009]
30. Talezadehlari A, Rahimi GH. The effect of geometrical imperfection on the axial buckling of unstiffened and stiffened composite cylinders with and without cutout. Modares Mechanical Engineering. 2017;17(7):245-256. [Persian] [Link]
31. Talezadehlari A, Rahimi GH. Buckling analysis of perforated composite cylindrical shell using Generalized Differential Quadrature Method (GDQM). Modares Mechanical Engineering. 2018;17(11):385-396. [Persian] [Link]
32. Ghannadpour SAM, Shakeri M. A new method to investigate the progressive damage of imperfect composite plates under in-plane compressive load. AUT Journal of Mechanical Engineering. 2017;1(2):159-168. [Link]
33. Kamareh F, Farrokhabadi A, Rahimi GH. Experimental and numerical investigation of skin/lattice stiffener debonding growth in composite panels under bending loading. Engineering Fracture Mechanics. 2018;190:471-490. [Link] [DOI:10.1016/j.engfracmech.2017.12.043]

Add your comments about this article : Your username or Email:

Send email to the article author