Volume 19, Issue 7 (2019)                   Modares Mechanical Engineering 2019, 19(7): 1711-1720 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Maaref Y, Pakravan H, Jafarpur K. Numerical Analysis of the Heat Sink Effect of Blood Vessels on Hepatic Radiofrequency and Microwave Ablation. Modares Mechanical Engineering. 2019; 19 (7) :1711-1720
URL: http://journals.modares.ac.ir/article-15-23371-en.html
1- Thermo-Fluids Department Department, Mechanical Engineering School, Shiraz University, Shiraz, Iran
2- Thermo-Fluids Department Department, Mechanical Engineering School, Shiraz University, Shiraz, Iran , pakravan@shirazu.ac.ir
Abstract:   (169 Views)
During the last 3 decades, different therapeutic methods have been used for cancer treatment. Hyperthermia is one of these methods, which destroys the tumor cells with applying temperatures about 41-46°C. Thermal ablations of hepatic tumors near large blood vessels are affected by the heat sink effect of blood vessels. In this study, the heat sink effect of blood vessels on hepatic mono-polar radiofrequency and microwave ablation was investigated. The simulation is performed by numerical solution of bio-heat transfer equation with equations of electrical current or electromagnetic waves. To analyze the heat sink effect of blood vessels, the tissue is modeled with and without blood vessel. The fraction of necrotic tissue is determined for 3 different diameters of blood vessels including 5, 10, and 15 mm. The results show that when the applicator distance to the blood vessel is less than or equal to 8 mm, the necrotic value significantly decreases and the heat sink effect becomes important; however, for distances larger than 30 mm, the necrotic value does not change and the heat sink effect is diminished. The heat sink effect increases with blood vessel diameter due to the blood flow increase. In addition, the results indicated that the microwave ablation is less affected by the heat sink effect in comparison with the mono-polar radiofrequency.
Full-Text [PDF 843 kb]   (73 Downloads)    

Received: 2018/07/22 | Accepted: 2019/01/5 | Published: 2019/07/1

References
1. Noori Daloii M R, Fazilaty H, Tabrizi M. Cancer metastasis, genetic and microenvironmental factors of distant tissue: A review article. Tehran University Medical Journal. 2013;70(11):671-683. [Persian] [Link]
2. Chiriac H, Petreus T, Carasevici E, Labusca L, Herea DD, Danceanu C, et al. In vitro cytotoxicity of Fe-Cr-Nb-B magnetic nanoparticles under high frequency electromagnetic field. Journal of Magnetism and Magnetic Materials. 2015;380:13-19. [Link] [DOI:10.1016/j.jmmm.2014.10.015]
3. Hervault A, Thanh NT. Magnetic nanoparticle-based therapeutic agents for thermo-chemotherapy treatment of cancer. Nanoscale. 2014;6(20):11553-11573. [Link] [DOI:10.1039/C4NR03482A]
4. Callstrom MR, Kurup AN. Percutaneous ablation for bone and soft tissue metastases-why cryoablation?. Skeletal Radiology. 2009;38(9):835-839. [Link] [DOI:10.1007/s00256-009-0736-4]
5. Dodd GD, Soulen MC, Kane RA, Livraghi T, Lees WR, Yamashita Y, et al. Minimally invasive treatment of malignant hepatic tumors: At the threshold of a major breakthrough. Radiographics. 2000;20(1):9-27. [Link] [DOI:10.1148/radiographics.20.1.g00ja019]
6. Kuang M, Lu MD, Xie XY, Xu HX, Mo LQ, Liu GJ, et al. Liver cancer: Increased microwave delivery to ablation zone with cooled-shaft antenna-experimental and clinical studies. Radiology. 2007;242(3):914-924. [Link] [DOI:10.1148/radiol.2423052028]
7. Laeseke PF, Sampson LA, Brace CL, Winter TC, Fine JP, Lee FT Jr. Unintended thermal injuries from radiofrequency ablation: Protection with 5% dextrose in water. AJR American Journal of Roentgenology. 2006;186(Suppl 5):S249-S254. [Link] [DOI:10.2214/AJR.04.1240]
8. Paganini AM, Rotundo A, Barchetti L, Lezoche E. Cryosurgical ablation of hepatic colorectal metastases. Surgical Oncology. 2007;16 Suppl 1:S137-S140. [Link] [DOI:10.1016/j.suronc.2007.10.031]
9. Berjano EJ. Theoretical modeling for radiofrequency ablation: State-of-the-art and challenges for the future. Biomedical Engineering Online. 2006;5:24. [Link] [DOI:10.1186/1475-925X-5-24]
10. Haemmerich D. Biophysics of radiofrequency ablation. Critical Reviews™ in Biomedical Engineering. 2010;38(1):53-63. [Link] [DOI:10.1615/CritRevBiomedEng.v38.i1.50]
11. Strohbehn JW. Temperature distributions from interstitial RF electrode hyperthermia systems: Theoretical predictions. International Journal of Radiation Oncology, Biology, Physics. 1983;9(11):1655-1667. [Link] [DOI:10.1016/0360-3016(83)90419-4]
12. Petryk AA, Giustini AJ, Gottesman RE, Trembly BS, Hoopes PJ. Comparison of magnetic nanoparticle and microwave hyperthermia cancer treatment methodology and treatment effect in a rodent breast cancer model. International Journal of Hyperthermia. 2013;29(8):819-827. [Link] [DOI:10.3109/02656736.2013.845801]
13. Coughlin CT. Prospects for interstitial hyperthermia. In: Urano M, Douple EB, editors. Interstitial hyperthermia: physics. biology and clinical aspects. Utrecht: VSP; 1992. [Link]
14. Petryk AA. Magnetic nanoparticle hyperthermia as an adjuvant cancer therapy with chemotherapy [Dissertation]. Hanover: Dartmouth College. 2013. [Link]
15. Qian GJ, Wang N, Shen Q, Sheng YH, Zhao JQ, Kuang M, et al. Efficacy of microwave versus radiofrequency ablation for treatment of small hepatocellular carcinoma: Experimental and clinical studies. European Radiology. 2012;22(9):1983-1990. [Link] [DOI:10.1007/s00330-012-2442-1]
16. Khokhlova TD, Hwang JH. HIFU for palliative treatment of pancreatic cancer. Journal of Gastrointestinal Oncology. 2011;2(3):175-184. [Link]
17. Pillai K, Akhter J, Chua TC, Shehata M, Alzahrani N, Al-Alem I, et al. Heat sink effect on tumor ablation characteristics as observed in monopolar radiofrequency, bipolar radiofrequency, and microwave, using ex vivo calf liver model. Medicine (Baltimore). 2015;94(9):e580. [Link] [DOI:10.1097/MD.0000000000000580]
18. Lu DS, Raman SS, Vodopich DJ, Wang M, Sayre J, Lassman C. Effect of vessel size on creation of hepatic radiofrequency lesions in pigs: Assessment of the "heat sink" effect. American Journal of Roentgenology. 2002;178(1):47-51. [Link] [DOI:10.2214/ajr.178.1.1780047]
19. Yhamyindee P, Phasukkit P, Tungjitkusolmon S, Sanpanich A. Analysis of heat sink effect in hepatic cancer treatment near arterial for microwave ablation by using finite element method. The 5th 2012 Biomedical Engineering International Conference, 5-7 Dec. 2012, Ubon Ratchathani, Thailand. Piscataway: IEEE; 2012. [Link] [DOI:10.1109/BMEiCon.2012.6465478]
20. Ringe KI, Lutat C, Rieder C, Schenk A, Wacker F, Raatschen HJ. Experimental evaluation of the heat sink effect in hepatic microwave ablation. PloS One. 2015;10(7):e0134301. [Link] [DOI:10.1371/journal.pone.0134301]
21. Lehmann KS, Poch FG, Rieder C, Schenk A, Stroux A, Frericks BB, et al. Minimal vascular flows cause strong heat sink effects in hepatic radiofrequency ablation ex vivo. Journal of Hepato-Biliary-Pancreatic sciences. 2016;23(8):508-516. [Link] [DOI:10.1002/jhbp.370]
22. Al-Alem I, Pillai K, Akhter J, Chua TC, Morris DL. Heat sink phenomenon of bipolar and monopolar radiofrequency ablation observed using polypropylene tubes for vessel simulation. Surgical Innovation. 2014;21(3):269-276. [Link] [DOI:10.1177/1553350613505713]
23. Mahjoob Sh, Vafai K. Analytical characterization of heat transport through biological media incorporating hyperthermia treatment. International Journal of Heat and Mass Transfer. 2009;52(5-6):1608-1618. [Link] [DOI:10.1016/j.ijheatmasstransfer.2008.07.038]
24. Jakab F, Sugár I, Ráth Z, Nágy P, Faller J. The relationship between portal venous and hepatic arterial blood flow. I. Experimental liver transplantation. HPB Surgery. 1996;10(1):21-26. [Link] [DOI:10.1155/1996/90536]
25. Curley SA. Radiofrequency ablation of malignant liver tumors. Annals of Surgical Oncology. 2003;10(4):338-347. [Link] [DOI:10.1245/ASO.2003.07.017]
26. Sazgarnia A, Naghavi N, Mehdizadeh H, Shahamat Z. Investigation of thermal distribution for pulsed laser radiation in cancer treatment with nanoparticle-mediated hyperthermia. Journal of Thermal Biology. 2015;47:32-41. [Link] [DOI:10.1016/j.jtherbio.2014.10.011]
27. Shukla A, Mondal A, Upadhyaya A. Numerical modeling of microwave heating. Science of Sintering. 2010;42(1):99-124. [Link] [DOI:10.2298/SOS1001099S]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author