Volume 19, Issue 2 (2019)                   Modares Mechanical Engineering 2019, 19(2): 293-302 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Jashnani H, Rahimi M, Karimzadeh A, Ettelaei M. Experimental Study on the Functionally Graded Ni-P-Al2O3 Coating Created on AA 5xxx Series for Wear Resistance Improvement by Pulse-Electrodeposition Method. Modares Mechanical Engineering. 2019; 19 (2) :293-302
URL: http://journals.modares.ac.ir/article-15-23418-en.html
1- Air Traffic Engineering Department, Flight Faculty, Shahid Sattari Aeronautical University of Science & Technology, Tehran, Iran , jashnani@ssau.ac.ir
2- Metallurgy and Material Engineering Department, Engineering Faculty, University of Tehran, Tehran, Iran
3- Materials Science Department, Engineering Faculty, Tarbiat Modares University, Tehran, Iran
Abstract:   (1258 Views)
The properties such as weak wear resistance and low hardness of aluminum alloys have limited their use in various industries. In this research, it has been attempted to improve the mechanical and tribological properties of these materials by deposition of nickel-phosphorous-alumina functionally graded coating. Functionally graded coatings have been produced by a gradual change in the chemical composition and content of the nanoparticle, using continuous change in pulse parameters such as duty cycle and frequency during the coating process. So, the effect of the duty cycle and frequency has been investigated. Two types of coatings have been created with a gradual decrease in the duty cycle of 90% to 30% and a pulse frequency of 50 to 500 Hz. The result shows that the effect of frequency on the amount of phosphorus and nanoparticles is negligible, and it has mainly affected on grain size. However, in nanocomposite coats, the gradual decrease of duty cycle has led to an increase in the amount of phosphorus (5.3% to 15.5 wt. %) and alumina nanoparticles (0.7% to 2.6 wt. %) from the substrate to the top surface. With the gradual changes in chemical and microstructure, the adhesion of the coating to the substrate has improved. The results of micro-hardness have also shown that the creation of functionally graded coatings using duty cycle variation has a higher hardness than the one produced by frequency changing. Also, based on the results of the pin test on a disk against abrasive steel 52100, the wear resistance of functionally graded coatings has improved compared to single-layer coatings.
 
 
Full-Text [PDF 1780 kb]   (388 Downloads)    

Received: 2018/07/23 | Accepted: 2018/10/7 | Published: 2019/03/4

References
1. Sannino AP, Rack HJ. Dry sliding wear of discontinuously reinforced aluminum composites: Review and discussion. Wear. 1995;189(1-2):1-19. [Link] [DOI:10.1016/0043-1648(95)06657-8]
2. Rohatgi PK, Pai BC. Seizure resistance of cast aluminum alloys containing dispersed graphite particles of different sizes. Journal of Lubrication Technology. 1979;101(3):376-380. [Link] [DOI:10.1115/1.3453377]
3. Deuis RL, Subramanian C, Yellup JM. Dry sliding wear of aluminium composites—a review. Composites Science and Technology. 1997;57(4):415-435. [Link] [DOI:10.1016/S0266-3538(96)00167-4]
4. Dong H, editor. Surface engineering of light alloys: Aluminium, magnesium and titanium alloys. Amsterdam: Elsevier Science; 2010. [Link] [DOI:10.1533/9781845699451]
5. Habazaki H, Lu YP, Kawashima A, Asami K, Hashimoto K. The effects of structural relaxation and crystallization on the corrosion behavior of electrodeposited amorphous NiP alloys. Corrosion Science. 1991;32(11):1227-1235. [Link] [DOI:10.1016/0010-938X(91)90134-B]
6. Jeong DH, Erb U, Aust KT, Palumbo G. The relationship between hardness and abrasive wear resistance of electrodeposited nanocrystalline Ni-P coatings. Scripta Materialia. 2003;48(8):1067-1072. [Link] [DOI:10.1016/S1359-6462(02)00633-4]
7. Wang L, Gao Y, Xu T, Xue Q. Corrosion resistance and lubricated sliding wear behaviour of novel Ni-P graded alloys as an alternative to hard Cr deposits. Applied Surface Science. 2006;252(20):7361-7372. [Link] [DOI:10.1016/j.apsusc.2005.08.040]
8. Wang L, Gao Y, Xue Q, Liu H, Xu T. A novel electrodeposited Ni-P gradient deposit for replacement of conventional hard chromium. Surface and Coatings Technology. 2006;200(12-13):3719-3726. [Link] [DOI:10.1016/j.surfcoat.2004.10.016]
9. Bozzini B, Martini C, Cavallotti PL, Lanzoni E. Relationships among crystallographic structure, mechanical properties and tribological behaviour of electroless Ni-P(9%)/B4C films. Wear. 1999;225-229(Pt 2):806-813. [Link] [DOI:10.1016/S0043-1648(98)00389-5]
10. Wu Y, Liu H, Shen B, Liu L, Hu W. The friction and wear of electroless Ni-P matrix with PTFE and/or SiC particles composite. Tribology International. 2006;39(6):553-559. [Link] [DOI:10.1016/j.triboint.2005.04.032]
11. Staia MH, Enriquez C, Puchi ES. Influence of the heat treatment on the abrasive wear resistance of electroless Ni-P. Surface and Coatings Technology. 1997;94-95:543-548. [Link] [DOI:10.1016/S0257-8972(97)00463-5]
12. Punith Kumar MK, Venkatesha TV, Pavithra MK, Nithyananda Shetty A. The fabrication, characterization and electrochemical corrosion behavior of Zn-TiO2 composite coatings. Physica Scripta. 2011;84(3):035601. [Link] [DOI:10.1088/0031-8949/84/03/035601]
13. Arunsunai Kumar K, Paruthimal Kalaignan G, Muralidharan VS. Direct and pulse current electrodeposition of Ni-W-TiO2 nanocomposite coatings. Ceramics International. 2013;39(3):2827-2834. [Link] [DOI:10.1016/j.ceramint.2012.09.054]
14. Lari Baghal SM, Heydarzadeh Sohi M, Amadeh A. A functionally gradient nano-Ni-Co/SiC composite coating on aluminum and its tribological properties. Surface and Coatings Technology. 2012;206(19-20):4032-4039. [Link] [DOI:10.1016/j.surfcoat.2012.03.084]
15. Torabinejad V, Aliofkhazraei M, Sabour Rouhaghdam A, Allahyarzadeh MH. Tribological performance of Ni-Fe-Al2O3 multilayer coatings deposited by pulse electrodeposition. Wear. 2017;380-381:115-125. [Link] [DOI:10.1016/j.wear.2017.03.013]
16. Allahyarzadeh MH, Aliofkhazraei M, Sabour Rouhaghdam AR, Torabinejad V. Electrochemical tailoring of ternary Ni-W-Co (Al2O3) nanocomposite using pulse reverse technique. Journal of Alloys and Compounds. 2017;705:788-800. [Link] [DOI:10.1016/j.jallcom.2017.02.155]
17. Torabinejad V, Sabour Rouhaghdam A, Aliofkhazraei M, Allahyarzadeh MH. Electrodeposition of Ni-Fe and Ni-Fe-(nano Al2O3) multilayer coatings. Journal of Alloys and Compounds. 2016;657:526-536. [Link] [DOI:10.1016/j.jallcom.2015.10.154]
18. Shourgeshty M, Aliofkhazraei M, Karimzadeh A. Study on functionally graded Zn-Ni-Al2O3 coatings fabricated by pulse-electrodeposition. Surface Engineering. 2018 Feb. [Link] [DOI:10.1080/02670844.2018.1432172]
19. Shourgeshty M, Aliofkhazraei M, Karimzadeh A, Poursalehi R. Corrosion and wear properties of Zn-Ni and Zn-Ni-Al2O3 multilayer electrodeposited coatings. Materials Research Express. 2017;4(9):096406. [Link] [DOI:10.1088/2053-1591/aa87d5]
20. Rezaeiolum A, Aliofkhazraei M, Karimzadeh A, Rouhaghdam AS, Miresmaeili R. Electrodeposition of Ni-Mo and Ni-Mo-(nano Al2O3) multilayer coatings. Surface Engineering. 2018;34(6):423-432. [Link] [DOI:10.1080/02670844.2017.1327009]
21. Majidi H, Aliofkhazraei M, Karimzadeh A, Sabour Rouhaghdam AR. Optimising number of layers of pulse electrodeposited Ni-Al2O3 multilayer nanocomposite coatings for corrosion and wear resistance. Canadian Metallurgical Quarterly. 2017;56(2):179-189. [Link] [DOI:10.1080/00084433.2017.1295649]
22. Kasazaki Y, Fujiwara H, Miyamoto H. Age-hardening mechanism for nanocrystalline Ni-P alloys synthesized by electrodeposition. Surface and Coatings Technology. 2014;253:154-160. [Link] [DOI:10.1016/j.surfcoat.2014.05.029]
23. Zoikis-Karathanasis A, Pavlatou EA, Spyrellis N. Pulse electrodeposition of Ni-P matrix composite coatings reinforced by SiC particles. Journal of Alloys and Compounds. 2010;494(1-2):396-403. [Link] [DOI:10.1016/j.jallcom.2010.01.057]
24. Bahrololoom ME, Sani R. The influence of pulse plating parameters on the hardness and wear resistance of nickel-alumina composite coatings. Surface and Coatings Technology. 2005;192(2-3):154-163. [Link] [DOI:10.1016/j.surfcoat.2004.09.023]
25. Lajevardi SA, Shahrabi T. Effects of pulse electrodeposition parameters on the properties of Ni-TiO2 nanocomposite coatings. Applied Surface Science. 2010;256(22):6775-6781. [Link] [DOI:10.1016/j.apsusc.2010.04.088]
26. Gyftou P, Pavlatou EA, Spyrellis N. Effect of pulse electrodeposition parameters on the properties of Ni/nano-SiC composites. Applied Surface Science. 2008;254(18):5910-5916. [Link] [DOI:10.1016/j.apsusc.2008.03.151]
27. Sivasakthi P, Sekar R, Ramesh Bapu GNK. Pulse electrodeposited nickel using sulphamate electrolyte for hardness and corrosion resistance. Materials Research Bulletin. 2015;70:832-839. [Link] [DOI:10.1016/j.materresbull.2015.06.019]
28. Sajjadnejad M, Ghorbani M, Afshar A. Microstructure-corrosion resistance relationship of direct and pulse current electrodeposited Zn-TiO2 nanocomposite coatings. Ceramics International. 2015;41(1 Pt A):217-224. [Link] [DOI:10.1016/j.ceramint.2014.08.061]
29. Sajjadnejad M, Mozafari A, Omidvar H, Javanbakht M. Preparation and corrosion resistance of pulse electrodeposited Zn and Zn-SiC nanocomposite coatings. Applied Surface Science. 2014;300:1-7. [Link] [DOI:10.1016/j.apsusc.2013.12.143]
30. Yang Y, Cheng YF. Fabrication of Ni-Co-SiC composite coatings by pulse electrodeposition - effects of duty cycle and pulse frequency. Surface and Coatings Technology. 2013;216:282-288. [Link] [DOI:10.1016/j.surfcoat.2012.11.059]
31. Landolt D. Electrochemical and materials science aspects of alloy deposition. Electrochimica Acta. 1994;39(8-9):1075-1090. [Link] [DOI:10.1016/0013-4686(94)E0022-R]
32. Budevski EB, Staikov GT, Lorenz WJ. Electrochemical phase formation and growth: An introduction to the initial stages of metal deposition. New York: John Wiley & Sons; 2008. [Link]
33. Allahyarzadeh MH, Aliofkhazraei M, Sabour Rouhaghdam AR, Torabinejad V. Electrodeposition of Ni-W-Al2O3 nanocomposite coating with functionally graded microstructure. Journal of Alloys and Compounds. 2016;666:217-226. [Link] [DOI:10.1016/j.jallcom.2016.01.031]
34. Ma C. Electrodeposited nanocrystalline Ni-Co and Co-Ni-P coatings for hard chromium replacement [Dissertation]. Southampton: University of Southampton; 2013. [Link]
35. Ma C, Wang SC, Wang LP, Walsh FC, Wood RJK. The electrodeposition and characterisation of low-friction and wear-resistant Co-Ni-P coatings. Surface and Coatings Technology. 2013;235:495-505. [Link] [DOI:10.1016/j.surfcoat.2013.08.009]
36. Udompanit N, Wangyao P, Henpraserttae S, Boonyongmaneerat Y. Wear response of composition-modulated multilayer Ni-W coatings. Advanced Materials Research. 2014;1025-1026:302-309. [Link] [DOI:10.4028/www.scientific.net/AMR.1025-1026.302]
37. Akinci A, Sen S, Sen U. Friction and wear behavior of zirconium oxide reinforced PMMA composites. Composites Part B Engineering. 2014;56:42-47. [Link] [DOI:10.1016/j.compositesb.2013.08.015]
38. Cai P, Wang T, Wang Q. Sensitivity of μ of friction materials to load and speed under dry sliding and water lubricated conditions. Tribology Transactions. 2016;59(2):300-308. [Link] [DOI:10.1080/10402004.2015.1077407]
39. Al-Samarai RA, Haftirman, Ahmad KR, Al-Douri Y. Effect of load and sliding speed on wear and friction of aluminum-silicon casting alloy. International Journal of Scientific and Research Publications. 2012;2(3):1-4. [Link]
40. Ramezanalizadeh H, Emamy M, Shokouhimehr M. Wear behavior of Al/CMA-Type Al3Mg2 nanocomposites fabricated by mechanical milling and hot extrusion. Tribology Transactions. 2016;59(2):219-228. [Link] [DOI:10.1080/10402004.2015.1050138]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author