Volume 19, Issue 2 (February 2019)                   Modares Mechanical Engineering 2019, 19(2): 269-280 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Honarpisheh M, Tavajjohi M, Nazari F. Experimental and Numerical Study of Severe Plastic Deformation in the Constrained Groove Pressing Process on the Pure Copper Sheets. Modares Mechanical Engineering 2019; 19 (2) :269-280
URL: http://mme.modares.ac.ir/article-15-23967-en.html
1- Manufacturing Department, Mechanical Engineering Faculty, University of Kashan, Kashan, Iran , honarpishe@kashanu.ac.ir
2- Manufacturing Department, Mechanical Engineering Faculty, University of Kashan, Kashan, Iran
Abstract:   (12212 Views)
The Constrained Groove Pressing (CGP) process is one of the most effective and newest methods of the severe plastic deformation for production ultrafine-grain metal sheets. In this research, the effect of CGP on the microstructure and mechanical properties of pure copper sheets was investigated. In order to study the microstructure of the samples, the optical microscopy was used, and tensile and Vickers micro-hardness tests were utilized for the evaluation of the mechanical properties. Investigating the microstructure of CGPed sheets determined that the CGP process has caused intense grain refinement, especially at first pass. Also, the results of mechanical properties showed that this process has considerably increased strength and hardness of the copper samples. In the numerical investigation of constrained groove pressing, effective strain and forming force were evaluated, using finite element simulation and the results indicated that with increasing number of CGP passes, effective strain, and forming force increase. Also, distribution of effective strain illustrated that the center of samples are under more effective strain that causes increasing hardness inside the samples be more than increasing hardness of the surface. Finally, a method was presented for estimating the yield strength of material, using the hardness values, and it could calculate the yield stress in different passes of process with an acceptable error of 6%.
Full-Text [PDF 1679 kb]   (3477 Downloads)    
Article Type: Original Research | Subject: Aerospace Structures
Received: 2018/08/10 | Accepted: 2018/10/14 | Published: 2019/02/2

References
1. Hosseini E, Kazeminezhad M. Integration of physically based models into FE analysis: Homogeneity of copper sheets under large plastic deformations. Computational Materials Science. 2010;48(1):166-173. [Link] [DOI:10.1016/j.commatsci.2009.12.023]
2. Honarpisheh M, Dehghani M, Haghighat E. Investigation of mechanical properties of Al/Cu strip produced by equal channel angular rolling. Procedia Materials Science. 2015;11:1-5. [Link] [DOI:10.1016/j.mspro.2015.11.002]
3. Honarpisheh M, Haghighat E, Kotobi M. Investigation of residual stress and mechanical properties of equal channel angular rolled St12 strips. Proceedings of the Institution of Mechanical Engineers Part L Journal of Materials Design and Applications. 2018;232(10):841-851. [Link] [DOI:10.1177/1464420716652436]
4. Kotobi M, Honarpisheh M. Uncertainty analysis of residual stresses measured by slitting method in equal-channel angular rolled Al-1060 strips. The Journal of Strain Analysis for Engineering Design. 2017;52(2):83-92. [Link] [DOI:10.1177/0309324716682124]
5. Saito Y, Utsunomiya H, Tsuji N, Sakai T. Novel ultra-high straining process for bulk materials - development of the Accumulative Roll-Bonding (ARB) process. Acta Materialia. 1999;47(2):579-583. [Link] [DOI:10.1016/S1359-6454(98)00365-6]
6. Lowe TC, Valiev RZ. The use of severe plastic deformation techniques in grain refinement. JOM. 2004;56(10):64-68. [Link] [DOI:10.1007/s11837-004-0295-z]
7. Nazari F, Honarpisheh M. Analytical and experimental investigation of deformation in constrained groove pressing process. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science. 2018. [Link]
8. Shin DH, Park JJ, Kim YS, Park KT. Constrained groove pressing and its application to grain refinement of aluminum. Materials Science and Engineering A. 2002;328(1-2):98-103. [Link] [DOI:10.1016/S0921-5093(01)01665-3]
9. Krishnaiah A, Chakkingal U, Venugopal P. Production of ultrafine grain sizes in aluminium sheets by severe plastic deformation using the technique of groove pressing. Scripta Materialia. 2005;52(12):1229-1233. [Link] [DOI:10.1016/j.scriptamat.2005.03.001]
10. Krishnaiah A, Chakkingal U, Venugopal P. Applicability of the groove pressing technique for grain refinement in commercial purity copper. Materials Science and Engineering A. 2005;410-411:337-340. [Link] [DOI:10.1016/j.msea.2005.08.101]
11. Peng K, Su L, Shaw LL, Qian KW. Grain refinement and crack prevention in constrained groove pressing of two-phase Cu-Zn alloys. Scripta Materialia. 2007;56(11):987-990. [Link] [DOI:10.1016/j.scriptamat.2007.01.043]
12. Peng K, Zhang Y, Shaw LL, Qian KW. Microstructure dependence of a Cu-38Zn alloy on processing conditions of constrained groove pressing. Acta Materialia. 2009;57(18):5543-5553. [Link] [DOI:10.1016/j.actamat.2009.07.049]
13. Rafizadeh E, Mani A, Kazeminezhad M. The effects of intermediate and post-annealing phenomena on the mechanical properties and microstructure of constrained groove pressed copper sheet. Materials Science and Engineering A. 2009;515(1-2):162-168. [Link] [DOI:10.1016/j.msea.2009.03.081]
14. Ganesh Niranjan G, Chakkingal U. Deep drawability of commercial purity aluminum sheets processed by groove pressing. Journal of Materials Processing Technology. 2010;210(11):1511-1516. [Link] [DOI:10.1016/j.jmatprotec.2010.04.009]
15. Shirdel A, Khajeh A, Moshksar MM. Experimental and finite element investigation of semi-constrained groove pressing process. Materials & Design. 2010;31(2):946-950. [Link] [DOI:10.1016/j.matdes.2009.07.035]
16. Alihosseini H, Dehghani K. Bake hardening of ultra-fine grained low carbon steel produced by constrained groove pressing. Materials Science and Engineering A. 2012;549:157-162. [Link] [DOI:10.1016/j.msea.2012.04.024]
17. Khakbaz F, Kazeminezhad M. Strain rate sensitivity and fracture behavior of severely deformed Al-Mn alloy sheets. Materials Science and Engineering A. 2012;532:26-30. [Link] [DOI:10.1016/j.msea.2011.10.057]
18. Ratna Sunil B, Kumar AA, Sampath Kumar TS, Chakkingal U. Role of biomineralization on the degradation of fine grained AZ31 magnesium alloy processed by groove pressing. Materials Science and Engineering C. 2013;33(3):1607-1615. [Link] [DOI:10.1016/j.msec.2012.12.095]
19. Ebrahimi M, Attarilar Sh, Djavanroodi F, Gode C, Kim HS. Wear properties of brass samples subjected to constrained groove pressing process. Materials & Design. 2014;63:531-537. [Link] [DOI:10.1016/j.matdes.2014.06.043]
20. Wang ZS, Guan YJ, Zhong CK. Effects of friction on constrained groove pressing of pure Al sheets. Advanced Materials Research. 2014;926-930:81-84. [Link] [DOI:10.4028/www.scientific.net/AMR.926-930.81]
21. Wang ZS, Guan YJ, Liang P. Deformation efficiency, homogeneity, and electrical resistivity of pure copper processed by constrained groove pressing. Rare Metals. 2014;33(3):287-292. [Link] [DOI:10.1007/s12598-013-0200-4]
22. Wang ZS, Guan YJ, Wang GC, Zhong CK. Influences of die structure on constrained groove pressing of commercially pure Ni sheets. Journal of Materials Processing Technology. 2015;215:205-218. [Link] [DOI:10.1016/j.jmatprotec.2014.08.018]
23. Salvati E, Zhang H, Fong KS, Paynter RJH, Song X, Korsunsky AM. Fatigue and fracture behaviour of AZ31b Mg alloy plastically deformed by constrained groove pressing in the presence of overloads. Procedia Structural Integrity. 2016;2:3772-3781. [Link] [DOI:10.1016/j.prostr.2016.06.469]
24. Yadav PC, Sinhal A, Sahu S, Roy A, Shekhar S. Microstructural inhomogeneity in constrained groove pressed Cu-Zn alloy sheet. Journal of Materials Engineering and Performance. 2016;25(7):2604-2614. [Link] [DOI:10.1007/s11665-016-2142-0]
25. Ghazani MS, Vajd A. Finite element analysis of the groove pressing of aluminum alloy. Modeling and Numerical Simulation of Material Science. 2014;4(1):32-36. [Link] [DOI:10.4236/mnsms.2014.41006]
26. Kuns L, Collini L. Mechanical properties of copper processed by equal channel angular pressing – a review. Frattura ed Integrità Strutturale. 2012;6(19):61-75. [Link]
27. Oberg E, Horton HL, Jones FD, Ryffel HH. Machinery's handbook. 29th Edition. Mc Cauley CJ, editor. New York City: Industrial Press; 2012. [Link]
28. Johnson GR, Cook WH. William H. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures. Proceedings of the 7th International Symposium on Ballistics, The Hague, 19-21 April 1983. 1983;21(1):541-547. [Link]
29. Johnson GR, Cook WH. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures. Engineering Fracture Mechanics. 1985;21(1):31-48. [Link] [DOI:10.1016/0013-7944(85)90052-9]
30. Kazeminezhad M, Hosseini E. Optimum groove pressing die design to achieve desirable severely plastic deformed sheets. Materials & Design. 2010;31(1):94-103. [Link] [DOI:10.1016/j.matdes.2009.07.008]
31. Khodabakhshi F, Kazeminezhad M, Kokabi AH. Constrained groove pressing of low carbon steel: Nano-structure and mechanical properties. Materials Science and Engineering A. 2010;527(16-17):4043-4049. [Link] [DOI:10.1016/j.msea.2010.03.005]
32. Satheesh Kumar SS, Raghu T. Mechanical behaviour and microstructural evolution of constrained groove pressed nickel sheets. Journal of Materials Processing Technology. 2013;213(2):214-220. [Link] [DOI:10.1016/j.jmatprotec.2012.09.012]
33. Khodabakhshi F, Abbaszadeh M, Eskandari H, Mohebpour SR. Application of CGP-cross route process for microstructure refinement and mechanical properties improvement in steel sheets. Journal of Manufacturing Processes. 2013;15(4):533-541. [Link] [DOI:10.1016/j.jmapro.2013.08.001]
34. Satheesh Kumar SS, Raghu T. Structural and mechanical behaviour of severe plastically deformed high purity aluminium sheets processed by constrained groove pressing technique. Materials & Design. 2014;57:114-120. [Link] [DOI:10.1016/j.matdes.2013.12.053]
35. Honarpisheh M, Nazari F, Ebrahimpoor V. Investigation of constrained groove pressing on the copper sheets. Iranian Journal of Mechanical Enginearing. 2017;19(1):6-18. [Persian] [Link]
36. Khodabakhshi F, Abbaszadeh M, Mohebpour SR, Eskandari H. 3D finite element analysis and experimental validation of constrained groove pressing-cross route as an SPD process for sheet form metals. The International Journal of Advanced Manufacturing Technology. 2014;73(9-12):1291-1305. [Link] [DOI:10.1007/s00170-014-5919-z]
37. Khakbaz F, Kazeminezhad M. Work hardening and mechanical properties of severely deformed AA3003 by constrained groove pressing. Journal of Manufacturing Processes. 2012;14(1):20-25. [Link] [DOI:10.1016/j.jmapro.2011.07.001]
38. Morattab S, Ranjbar K, Reihanian M. On the mechanical properties and microstructure of commercially pure Al fabricated by semi-constrained groove pressing. Materials Science and Engineering A. 2011;528(22-23):6912-6918. [Link] [DOI:10.1016/j.msea.2011.05.074]
39. Sajadi A, Ebrahimi M, Djavanroodi F. Experimental and numerical investigation of Al properties fabricated by CGP process. Materials Science and Engineering A. 2012;552:97-103. [Link] [DOI:10.1016/j.msea.2012.04.121]
40. Solhjoei N, Varposhty A, Mokhtarian H, Manian A. A comparative study to evaluate the efficiency of RCS and CGP processes. Indian Journal of Scientific Research. 2014;1(2):563-572. [Link]
41. Wang Z, Liang P, Guan Y, Liu Y, Jiang L. Experimental investigation of pure aluminum sheets processed by constrained groove pressing. Indian Journal of Engineering and Materials Sciences. 2014;21(2):121-127. [Link]
42. Nazari F, Honarpisheh M. Analytical model to estimate force of constrained groove pressing process. Journal of Manufacturing Processes. 2018;32:11-19. [Link] [DOI:10.1016/j.jmapro.2018.01.015]
43. Nobre JP, Dias AM, Kornmeier M. An empirical methodlogy to estimate a local yield stress in work-hardened surface layers. Experimental Mechanics. 2004;44(1):76-84. https://doi.org/10.1007/BF02427980 [Link] [DOI:10.1177/0014485104039755]
44. Asemabadi M, Sedighi M, Honarpisheh M. Investigation of cold rolling influence on the mechanical properties of explosive-welded Al/Cu bimetal. Materials Science and Engineering A. 2012;558:144-149. [Link] [DOI:10.1016/j.msea.2012.07.102]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.