Volume 19, Issue 3 (2019)                   Modares Mechanical Engineering 2019, 19(3): 777-787 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Mokhtari M, Taghizadeh M, Mazare M. Optimal Adaptive High-Order Super Twisting Sliding Mode Control of a Lower Limb Exoskeleton Robot. Modares Mechanical Engineering. 2019; 19 (3) :777-787
URL: http://journals.modares.ac.ir/article-15-24120-en.html
1- Mechatronics Department, Mechanical Engineering Faculty, Shahid Beheshti University, Tehran, Iran
2- Mechatronics Department, Mechanical Engineering Faculty, Shahid Beheshti University, Tehran, Iran , mo_taghizadeh@sbu.ac.ir
Abstract:   (320 Views)
External disturbances and internal uncertainties with an unknown range, as well as the connection between the human body and robot, are major problems in control and stability of exoskeleton robots. In order to deal with disturbances and uncertainties with the known range of the system, the sliding mode controller is used as a robust approach. The chattering phenomenon is one of the drawbacks of sliding mode controller, which boundary layer is employed to reduce the effects of this phenomenon. In this case, not only the chattering phenomenon is not completely eliminated, but the robust characteristics of the controller are mitigated. In this paper, in order to cope with the disturbances and uncertainties with unknown range, and guard against chattering as a key ingredient of excessive energy consumption and convergence rate reduction, optimal adaptive high-order super twisting sliding mode control has been applied. The dynamic model of a lower limb exoskeleton robot is extracted using the Lagrange method in which four actuators on the hip and knee joints of the left and right legs are considered. To achieve optimal performance, controller parameters are determined using Harmony Search algorithm by minimizing an objective function consisting of ITAE and control signal rate. The proposed controller performance is compared with optimal adaptive supper twisting sliding mode and optimal sliding mode controllers which shows the superiority of the optimal adaptive high-order sliding mode controller rather than other designed controllers.
Full-Text [PDF 1164 kb]   (220 Downloads)    

Received: 2017/11/15 | Accepted: 2018/11/13 | Published: 2019/03/1

1. Bogue R. Exoskeletons and robotic prosthetics: A review of recent developments. Industrial Robot An International Journal. 2009;36(5):421-427. [Link] [DOI:10.1108/01439910910980141]
2. Vukobratovic M, Frank AA, Juricic D. On the Stability of Biped Locomotion. IEEE Transactions on Biomedical Engineering. 1970; BME-17(1):25-36. [Link] [DOI:10.1109/TBME.1970.4502681]
3. Vukobratovic M, Borovac B, Surla D, Stokic D. Biped locomotion: Dynamics, stability, control and application. Berlin: Springer; 1990. p. 349. [Link] [DOI:10.1007/978-3-642-83006-8]
4. Dollar AM, Herr H. Lower extremity exoskeletons and active orthoses: Challenges and state-of-the-art. IEEE Transactions on Robotics. 2008;24(1):144-158. [Link] [DOI:10.1109/TRO.2008.915453]
5. Ijspeert AJ. Central pattern generators for locomotion control in animals and robots: A review. Neural Networks. 2008;21(4):642-653. [Link] [DOI:10.1016/j.neunet.2008.03.014]
6. Jezernik S, Colombo G, Keller T, Frueh H, Morari M. Robotic orthosis lokomat: A rehabilitation and research tool. Neuromodulation Technology at the Neural Interface. 2003;6(2):108-115. [Link] [DOI:10.1046/j.1525-1403.2003.03017.x]
7. Vanderborght B, Albu-Schaeffer A, Bicchi A, Burdetd E, Caldwelle DG, Carloni R. Variable impedance actuators: A review. Robotics and Autonomous Systems. 2013;61(12):1601-1614. [Link] [DOI:10.1016/j.robot.2013.06.009]
8. Kazerooni H, Steger R, Huang L. Hybrid control of the berkeley lower extremity exoskeleton (BLEEX). The International Journal of Robotics Research. 2006;25(5-6):561-573. [Link] [DOI:10.1177/0278364906065505]
9. Siciliano B, Khatib O, editors. Springer handbook of robotics. 1st Edition. Berlin: Springer; 2008. pp. 773-793. [Link] [DOI:10.1007/978-3-540-30301-5]
10. Walsh CJ, Pasch K, Herr H. An autonomous, underactuated exoskeleton for load-carrying augmentation. IEEE/RSJ International Conference on Intelligent Robots and Systems, 9-15 October, 2006, Beijing, China. Piscataway: IEEE; 2006. p. 1410-1415. [Link] [DOI:10.1109/IROS.2006.281932]
11. Qu Z, Dorsey J. Robust tracking control of robots by a linear feedback law. IEEE Transactions on Automatic Control. 1991;36(9):1081-1084. [Link] [DOI:10.1109/9.83543]
12. Hong Y. Finite-time stabilization and stabilizability of a class of controllable systems. Systems and control letters. 2002;46(4):231-236. [Link] [DOI:10.1016/S0167-6911(02)00119-6]
13. Wua Y, Yua X, Manb Z. Terminal sliding mode control design for uncertain dynamic systems. Systems & Control Letters. 1998;34(5):281-287. [Link] [DOI:10.1016/S0167-6911(98)00036-X]
14. Bartolini G, Ferrara A, Levant A, Usai E. On second order sliding mode controllers. In: Young KD, Özgüner Ü, editors. Variable structure systems, sliding mode and nonlinear control. London: Springer; 1999. pp. 329-350. [Link] [DOI:10.1007/BFb0109984]
15. Levant A. Sliding order and sliding accuracy in sliding mode control. International Journal of Control. 1993;58(6):1247-1263. [Link] [DOI:10.1080/00207179308923053]
16. Goel A, Swarup A. MIMO uncertain nonlinear system control via adaptive high-order super twisting sliding mode and its application to robotic manipulator. Journal of Control Automation and Electrical Systems. 2017;28(1):36-49. [Link] [DOI:10.1007/s40313-016-0286-7]
17. Kawamoto H, Sankai Y. Power assist method based on phase sequence and muscle force condition for HAL. Advanced Robotics. 2005;19(7):717-734. [Link] [DOI:10.1163/1568553054455103]
18. Marcheschi S, Salsedo F, Fontana M, Bergamasco M. Body Extender: Whole body exoskeleton for human power augmentation. IEEE International Conference on Robotics and Automation, 9-13 May 2011, Shanghai, China. Piscataway: IEEE; 2011. [Link] [DOI:10.1109/ICRA.2011.5980132]
19. Chevallereau Ch. Bipedal Robots: Modeling, design and walking synthesis. 1st Edition. Hoboken: Wiley; 2009. pp. 140-160. [Link] [DOI:10.1002/9780470611623]
20. Mokhtari M, Taghizadeh M, Mazare M. Optimal robust hybrid active force control of a lower limb exoskeleton. Modares Mechanical Engineering. 2018;18(2):342-350. [Persian] [Link]
21. Moezi SA, Rafeeyan M, Ebrahimi S. Sliding mode control of 3-RPR parallel robot on the optimal path using cuckoo optimization algorithm. Modares Mechanical Engineering. 2015;15(2):147-158. [Persian] [Link]
22. Moreno JA, Osorio M. A Lyapunov approach to second-order sliding mode controllers and observers. 47th IEEE Conference on Decision and Control, 9-11 December, 2008, Cancun, Mexico. Piscataway: IEEE; 2008. p. 2856-2861. [Link] [DOI:10.1109/CDC.2008.4739356]
23. Zargham F, Mazinan AH. Super-twisting sliding mode control approach with its application to wind turbine systems. Energy Systems. 2018;10(1):211-229. [Link] [DOI:10.1007/s12667-018-0270-3]
24. Shtessel Y, Edward Ch, Fridman L, Levant A. Sliding mode control and observation. New York: Springer; 2014. pp. 135-255. [Link] [DOI:10.1007/978-0-8176-4893-0]
25. Moreno JA. Lyapunov function for levant's second order differentiator. 51st IEEE Conference on Decision and Control (CDC), 10-13 December, 2012, Maui, HI, USA. Piscataway: IEEE; 2012. p. 6448-6453. [Link] [DOI:10.1109/CDC.2012.6426877]
26. Geem ZW, Kim JH, Loganathan GV. Harmony Search Optimization: Application to Pipe Network Design. International Journal of Modelling and Simulation. 2002;22(2):125-133. [Link] [DOI:10.1080/02286203.2002.11442233]
27. Khalili M, Kharrat R, Salahshoor K, Haghighat Sefat M. Global dynamic harmony search algorithm: GDHS. Applied Mathematics and Computation. 2014;228:195-219. [Link] [DOI:10.1016/j.amc.2013.11.058]

Add your comments about this article : Your username or Email:

Send email to the article author