Volume 19, Issue 2 (2019)                   Modares Mechanical Engineering 2019, 19(2): 347-362 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Rashidi F, Rashidi H. Exergy Analysis and Multiobjective Optimization of Microturbine Based Multigeneration Energy System. Modares Mechanical Engineering. 2019; 19 (2) :347-362
URL: http://journals.modares.ac.ir/article-15-24131-en.html
1- Electrical & Computer Engineering Department, Engineering Faculty, University of Hormozgan, Bandar-Abbas, Iran , rashidi@hormozgan.ac.ir
2- Mechanical Engineering Department, Engineering Faculty, University of Hormozgan, Bandar-Abbas, Iran
Abstract:   (1010 Views)
In this paper, using a thermodynamic rules, a multigeneration energy system with an initial stimulus of microturbine has been modeled. Then, using the concept of exergy and applying economic and environmental functions, exergy efficiency and total cost rate are calculated as two objective functions. Due to the contradiction of the objective functions, a multiobjective firefly algorithm is used to optimize the system. To accelerate the process of optimization and to prevent algorithm capture in local optimizations, new algorithms have been added to the innovative algorithm. The result of applying the algorithm on the multigeneration energy system will result in a set of Pareto-optimal solutions, indicating the compromise between the target functions. A fuzzy decision making based on max-min approach is used to select the desired solution between the Pareto-optimal solutions. In order to evaluate the efficiency of the proposed optimization algorithm, the results of this algorithm are compared with two particle swarm optimization algorithms and multi-objective genetic algorithm. Based on the results of system optimization, the exergy efficiency can increase up to 69%. Also, considering the total cost rate of the system as the only target function, this can be reduced to 572$/h.
Full-Text [PDF 819 kb]   (552 Downloads)    

Received: 2018/08/15 | Accepted: 2018/09/1 | Published: 2019/02/2

1. Ahmadi P, Dincer I, Rosen MA. Thermodynamic modeling and multi-objective evolutionary-based optimization of a new multigeneration energy system. Energy Conversion and Management, 2013;76:282-300. [Link] [DOI:10.1016/j.enconman.2013.07.049]
2. Taheri M, Mosaffa A, Farshi LG. Energy, exergy and economic assessments of a novel integrated biomass based multigeneration energy system with hydrogen production and LNG regasification cycle. Energy. 2017;125:162-177. [Link] [DOI:10.1016/j.energy.2017.02.124]
3. Khalid F, Dincer I, Rosen MA. Energy and exergy analyses of a solar-biomass integrated cycle for multigeneration. Solar Energy. 2015;112:290-299. [Link] [DOI:10.1016/j.solener.2014.11.027]
4. Nami H, Akrami E. Analysis of a gas turbine based hybrid system by utilizing energy, exergy and exergoeconomic methodologies for steam, power and hydrogen production. Energy Conversion and Management. 2017;143:326-337. [Link] [DOI:10.1016/j.enconman.2017.04.020]
5. Chen Q, Han W, Zheng JJ, Sui J, Jin HG. The exergy and energy level analysis of a combined cooling, heating and power system driven by a small scale gas turbine at off design condition. Applied Thermal Engineering. 2014;66(1-2):590-602. [Link] [DOI:10.1016/j.applthermaleng.2014.02.066]
6. Ezzat M. Dincer I. Energy and exergy analyses of a new geothermal–solar energy based system. Solar Energy. 2016;134:95-106. [Link] [DOI:10.1016/j.solener.2016.04.029]
7. Abbasi M, Chahartaghi M, Hashemian SM. Energy, exergy, and economic evaluations of a CCHP system by using the internal combustion engines and gas turbine as prime movers. Energy Conversion and Management. 2018;173:359-374. [Link] [DOI:10.1016/j.enconman.2018.07.095]
8. Zeng R, Li H, Liu L, Zhang X, Zhang G. A novel method based on multi-population genetic algorithm for CCHP–GSHP coupling system optimization. Energy Conversion and Management. 2015;105:1138-1148. [Link] [DOI:10.1016/j.enconman.2015.08.057]
9. Siddiqui O, Dincer I. Examination of a new solar-based integrated system for desalination, electricity generation and hydrogen production. Solar Energy. 2018;163:224-234. [Link] [DOI:10.1016/j.solener.2018.01.077]
10. Khalid F, Dincer I, Rosen MA. Techno-economic assessment of a solar-geothermal multigeneration system for buildings. International Journal of Hydrogen Energy. 2017;42(33):21454-21462. [Link] [DOI:10.1016/j.ijhydene.2017.03.185]
11. Sanaye S, Hajabdollahi H. Thermo-economic optimization of solar CCHP using both genetic and particle swarm algorithms. Journal of Solar Energy Engineering. 2015;137(1):011001. [Link] [DOI:10.1115/1.4027932]
12. Hajabdollahi H, Ganjehkaviri A, Jaafar MNM. Assessment of new operational strategy in optimization of CCHP plant for different climates using evolutionary algorithms. Applied Thermal Engineering. 2015;75:468-480. [Link] [DOI:10.1016/j.applthermaleng.2014.09.033]
13. Zhang H, Chen R, Wang F, Wang H, Wang Y. Multi-objective optimization for operational parameters of a micro-turbine CCHP system based on genetic algorithm. Procedia Engineering. 2017;205:1807-1814. [Link] [DOI:10.1016/j.proeng.2017.10.236]
14. Sadeghzadeh H, Ehyaei M, Rosen M. Techno-economic optimization of a shell and tube heat exchanger by genetic and particle swarm algorithms. Energy Conversion and Management. 2015;93:84-91. [Link] [DOI:10.1016/j.enconman.2015.01.007]
15. Lorestani A, Ardehali M. Optimal integration of renewable energy sources for autonomous tri-generation combined cooling, heating and power system based on evolutionary particle swarm optimization algorithm. Energy. 2018;145:839-855. [Link] [DOI:10.1016/j.energy.2017.12.155]
16. Lorestani A, Ardehali M. Optimization of autonomous combined heat and power system including PVT, WT, storages, and electric heat utilizing novel evolutionary particle swarm optimization algorithm. Renewable Energy. 2018;119:490-503. [Link] [DOI:10.1016/j.renene.2017.12.037]
17. Tichi S, Ardehali M, Nazari M. Examination of energy price policies in Iran for optimal configuration of CHP and CCHP systems based on particle swarm optimization algorithm. Energy Policy. 2010;38(10):6240-6250. [Link] [DOI:10.1016/j.enpol.2010.06.012]
18. Wang L, Yang Y, Dong C, Morosuk T, Tsatsaronis G. Parametric optimization of supercritical coal-fired power plants by MINLP and differential evolution. Energy Conversion and Management. 2014;85:828-838. [Link] [DOI:10.1016/j.enconman.2014.01.006]
19. Fetanat A, Khorasaninejad E. Size optimization for hybrid photovoltaic–wind energy system using ant colony optimization for continuous domains based integer programming. Applied Soft Computing. 2015;31:196-209. [Link] [DOI:10.1016/j.asoc.2015.02.047]
20. Guo L, Liu W, Cai J, Hong B, Wang C. A two-stage optimal planning and design method for combined cooling, heat and power microgrid system. Energy Conversion and Management. 2013;74:433-445. [Link] [DOI:10.1016/j.enconman.2013.06.051]
21. Ahmadi P, Dincer I, Rosen MA. Multi-objective optimization of a novel solar-based multigeneration energy system. Solar Energy. 2014;108:576-591. [Link] [DOI:10.1016/j.solener.2014.07.022]
22. Ahmadi P, Dincer I, Rosen MA. Multi-objective optimization of an ocean thermal energy conversion system for hydrogen production. International Journal of Hydrogen Energy. 2015;40(24):7601-7608. [Link] [DOI:10.1016/j.ijhydene.2014.10.056]
23. Imran M, Usman M, Park BS, Kim HJ, Lee DH. Multi-objective optimization of evaporator of organic Rankine cycle (ORC) for low temperature geothermal heat source. Applied Thermal Engineering. 2015;80:1-9. [Link] [DOI:10.1016/j.applthermaleng.2015.01.034]
24. Wang M, Wang J, Zhao P, Dai Y. Multi-objective optimization of a combined cooling, heating and power system driven by solar energy. Energy Conversion and Management. 2015;89:289-297. [Link] [DOI:10.1016/j.enconman.2014.10.009]
25. Sanaye S, Hajabdollahi H. 4E analysis and multi-objective optimization of CCHP using MOPSOA. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering. 2014;228(1):43-60. [Link] [DOI:10.1177/0954408912471001]
26. Soheyli S, Mayam MH, Mehrjoo M. Modeling a novel CCHP system including solar and wind renewable energy resources and sizing by a CC-MOPSO algorithm. Applied Energy. 2016;184:375-395. [Link] [DOI:10.1016/j.apenergy.2016.09.110]
27. Rashidi H, Khorshidi J. Exergy analysis and multiobjective optimization of a biomass gasification based multigeneration system. International Journal of Hydrogen Energy. 2018;43(5):2631-2644. [Link] [DOI:10.1016/j.ijhydene.2017.12.073]
28. Rashidi H, Khorshidi J. Exergoeconomic analysis and optimization of a solar based multigeneration system using multiobjective differential evolution algorithm. Journal of Cleaner Production. 2018;170:978-990. [Link] [DOI:10.1016/j.jclepro.2017.09.201]
29. Ishaq H, Dincer I, Naterer G. Exergy-based thermal management of a steelmaking process linked with a multi-generation power and desalination system. Energy. 2018;159:1206-1217. [Link] [DOI:10.1016/j.energy.2018.06.213]
30. Ghasemi A, Heidarnejad P, Noorpoor A. A novel solar-biomass based multi-generation energy system including water desalination and liquefaction of natural gas system: Thermodynamic and thermoeconomic optimization. Journal of Cleaner Production. 2018;196:424-437. [Link] [DOI:10.1016/j.jclepro.2018.05.160]
31. Mohammadi A, Mehrpooya M. Exergy analysis and optimization of an integrated micro gas turbine, compressed air energy storage and solar dish collector process. Journal of Cleaner Production. 2016;139:372-383. [Link] [DOI:10.1016/j.jclepro.2016.08.057]
32. Soltani R, Dincer I, Rosen MA. Thermodynamic analysis of a novel multigeneration energy system based on heat recovery from a biomass CHP cycle. Applied Thermal Engineering. 2015;89:90-100. [Link] [DOI:10.1016/j.applthermaleng.2015.05.081]
33. Islam S, Dincer I, Yilbas BS. Development, analysis and assessment of solar energy-based multigeneration system with thermoelectric generator. Energy Conversion and Management. 2018;156:746-756. [Link] [DOI:10.1016/j.enconman.2017.09.039]
34. Ahmadi P, Dincer I, Rosen MA. Thermoeconomic multi-objective optimization of a novel biomass-based integrated energy system. Energy. 2014;68:958-970. [Link] [DOI:10.1016/j.energy.2014.01.085]
35. Moghimi M, Emadi M, Ahmadi P, Moghadasi H. 4E analysis and multi-objective optimization of a CCHP cycle based on gas turbine and ejector refrigeration. Applied Thermal Engineering. 2018;141:516-530. [Link] [DOI:10.1016/j.applthermaleng.2018.05.075]
36. Sahu RK, Panda S, Padhan S. A hybrid firefly algorithm and pattern search technique for automatic generation control of multi area power systems. International Journal of Electrical Power & Energy Systems. 2015;64:9-23. [Link] [DOI:10.1016/j.ijepes.2014.07.013]
37. Feshki Farahani H, Rashidi F. An improved teaching-learning-based optimization with differential evolution algorithm for optimal power flow considering HVDC system. Journal of Renewable and Sustainable Energy. 2017;9(3):035505. [Link] [DOI:10.1063/1.4989828]
38. Czerniak JM, Zarzycki H. Artificial acari optimization as a new strategy for global optimization of multimodal functions. Journal of Computational Science. 2017;22:209-227. [Link] [DOI:10.1016/j.jocs.2017.05.028]
39. Tripathi PK, Bandyopadhyay S, Pal SK. Multi-objective particle swarm optimization with time variant inertia and acceleration coefficients. Information Sciences. 2007;177(22):5033-5049. [Link] [DOI:10.1016/j.ins.2007.06.018]
40. Deb K, Pratap A, Agarwal S, Meyarivan T. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation. 2002;6(2):182-197. [Link] [DOI:10.1109/4235.996017]
41. Borhanazad H, Mekhilef S, Ganapathy VG, Modiri-Delshad M, Mirtaheri A. Optimization of micro-grid system using MOPSO. Renewable Energy. 2014;71:295-306. [Link] [DOI:10.1016/j.renene.2014.05.006]

Add your comments about this article : Your username or Email:

Send email to the article author