Volume 20, Issue 2 (February 2020)                   Modares Mechanical Engineering 2020, 20(2): 485-498 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Bagheri-Bami A, Amini S, Teymouri R. Mechanical and Fine-Grain Structure Properties to Improve Ultrasonic-Assisted Surface Ball Deep Rolling of Aluminum Sheets AA6061-T6. Modares Mechanical Engineering 2020; 20 (2) :485-498
URL: http://mme.modares.ac.ir/article-15-24254-en.html
1- Manufacturing Department, Mechanical Engeeniering Faculty, K. N. Toosi University of Technology, Tehran, Iran
2- Manufacturing Department, Mechanical Engeeniering Faculty, Kashan University, Kashan, Iran , amini.s@kashanu.ac.ir
3- Manufacturing Department, Mechanical Engeeniering Faculty, Kashan University, Kashan, Iran
Abstract:   (2450 Views)
The ball deep rolling process is used to improve the surface properties of the workpiece. In this research, the optimum state was determined using the design of the experiment to improve the properties including optimum hardness and roughness. It was determined 3 passes and the type of traditionally and ultrasonic process and proposed regression model at the speed of 1000mm/min. In this case, it showed the hardness of 131 micro vickers and also determined minimum roughness in the mean roughness of 0.179 microns and the maximum roughness of 1.01 microns. The microstructure and tensile tests have been investigated in the optimal sample, compared to the surface topographic reference sample. The microstructure has been shown the decreases from about 30-50 microns to about 300 nanometers in thickness at about 50 microns below the surface by scanning electron microscopy. The tensile stress and percentage increase in length were determined by 10% and 29% increase, respectively by the tensile strength test. Topography has also shown the reduction of roughness by 40%. The hardness of the subsurface was studied in the thickness of the workpiece and it was compared to the same traditional and modern optimum specimen. The result showed the effect of increasing the hardness due to the of the structure fracture and strain rate.
Full-Text [PDF 2077 kb]   (1690 Downloads)    
Article Type: Original Research | Subject: Metal Forming
Received: 2018/08/19 | Accepted: 2019/05/30 | Published: 2020/02/1

References
1. Schulze V, Bleicher F, Groche P, Guo YB, Pyun YS. Surface modification by machine hammer peening and burnishing. CIRP Annals. 2016;65(2):809-832. [Link] [DOI:10.1016/j.cirp.2016.05.005]
2. Wu B, Zhang L, Zhang J, Murakami RI, Pyoun YS. An investigation of ultrasonic nanocrystal surface modification machining process by numerical simulation. Advances in Engineering Software. 2015;83:59-69. [Link] [DOI:10.1016/j.advengsoft.2015.01.011]
3. Hiegemann L, Weddeling C, Tekkaya AE. Analytical contact pressure model for predicting roughness of ball burnished surfaces. Journal of Materials Processing Technology. 2016;232:63-77. [Link] [DOI:10.1016/j.jmatprotec.2016.01.024]
4. Kuznetsov VP, Tarasov SY, Dmitriev AI. Nanostructuring burnishing and subsurface shear instability. Journal of Materials Processing Technology. 2015;217:327-335. [Link] [DOI:10.1016/j.jmatprotec.2014.11.023]
5. Esme U, Kulekci MK, Ustun D, Kahraman F, Kazancoglu Y. Grey-based fuzzy algorithm for the optimization of the ball burnishing process. Materials Testing. 2015;57(7-8):666-673. [Link] [DOI:10.3139/120.110763]
6. El-Axir MH, Othman OM, Abodiena AM. Study on the inner surface finishing of aluminum alloy 2014 by ball burnishing process. Journal of Materials Processing Technology. 2008;202(1-3):435-442. [Link] [DOI:10.1016/j.jmatprotec.2007.10.040]
7. Shiou FJ, Banh QN. Development of an innovative small ball-burnishing tool embedded with a load cell. The International Journal of Advanced Manufacturing Technology. 2016;87(1-4):31-41. [Link] [DOI:10.1007/s00170-016-8413-y]
8. Teimouri R, Amini S, Bagheri Bami A. Evaluation of optimized surface properties and residual stress in ultrasonic assisted ball burnishing of AA6061-T6. Measurement. 2018;116:129-139. [Link] [DOI:10.1016/j.measurement.2017.11.001]
9. Ye C, Telang A, Gill AS, Suslov S, Idell Y, Zweiacker K, et al. Gradient nanostructure and residual stresses induced by Ultrasonic Nano-Crystal Surface Modification in 304 austenitic stainless steel for high strength and high ductility. Materials Science and Engineering: A. 2014;613:274-288. [Link] [DOI:10.1016/j.msea.2014.06.114]
10. Bozdana AT, Gindy NNZ. Comparative experimental study on effects of conventional and ultrasonic deep cold rolling processes on Ti-6Al-4V. Materials Science and Technology. 2008;24(11):1378-1384. [Link] [DOI:10.1179/174328408X302431]
11. Bozdana AT, Gindy NNZ, Li H. Deep cold rolling with ultrasonic vibrations-a new mechanical surface enhancement technique. International Journal of Machine Tools and Manufacture. 2005;45(6):713-718. [Link] [DOI:10.1016/j.ijmachtools.2004.09.017]
12. Jerez-Mesa R, Travieso-Rodriguez JA, Gomez-Gras G, Lluma-Fuentes J. Development, characterization and test of an ultrasonic vibration-assisted ball burnishing tool. Journal of Materials Processing Technology. 2018;257:203-212. [Link] [DOI:10.1016/j.jmatprotec.2018.02.036]
13. Chui P, Sun K, Sun C, Wu C, Wang H, Zhao Y. Effect of surface nanocrystallization induced by fast multiple rotation rolling on mechanical properties of a low carbon steel. Materials & Design. 2012;35:754-759. [Link] [DOI:10.1016/j.matdes.2011.10.042]
14. Kattoura M, Telang A, Mannava SR, Qian D, Vasudevan VK. Effect of Ultrasonic Nanocrystal Surface Modification on residual stress, microstructure and fatigue behavior of ATI 718Plus alloy. Materials Science and Engineering: A. 2018;711:364-377. [Link] [DOI:10.1016/j.msea.2017.11.043]
15. Gharbi F, Sghaier S, Hamdi H, Benameur T. Ductility improvement of aluminum 1050A rolled sheet by a newly designed ball burnishing tool device. The International Journal of Advanced Manufacturing Technology. 2012;60(1-4):87-99. [Link] [DOI:10.1007/s00170-011-3598-6]
16. Gharbi F, Sghaier S, Morel F, Benameur T. Experimental investigation of the effect of burnishing force on service properties of AISI 1010 steel plates. Journal of Materials Engineering and Performance. 2015;24(2):721-725. [Link] [DOI:10.1007/s11665-014-1349-1]
17. Amanov A, Sasaki S, Kim DE, Penkov OV, Pyun YS. Improvement of the tribological properties of Al6061-T6 alloy under dry sliding conditions. Tribology International. 2013;64:24-32. [Link] [DOI:10.1016/j.triboint.2013.02.034]
18. Li L, Kim M, Lee S, Kim J, Kim H, Lee D. Study on surface modification of aluminum 6061 by multiple ultrasonic impact treatments. The International Journal of Advanced Manufacturing Technology. 2018;96(1-4):1255-1264. [Link] [DOI:10.1007/s00170-018-1666-x]
19. Amini S, Bagheri A, Teimouri R. Ultrasonic-assisted ball burnishing of aluminum 6061 and AISI 1045 steel. Materials and Manufacturing Processes. 2018;33(11):1250-1259. [Link] [DOI:10.1080/10426914.2017.1364862]
20. Sagbas A. Analysis and optimization of surface roughness in the ball burnishing process using response surface methodology and desirabilty function. Advances in Engineering Software. 2011;42(11):992-998. [Link] [DOI:10.1016/j.advengsoft.2011.05.021]
21. Salmi M, Huuki J, Ituarte IF. The ultrasonic burnishing of cobalt-chrome and stainless steel surface made by additive manufacturing. Progress in Additive Manufacturing. 2017;2(1-2):31-41. [Link] [DOI:10.1007/s40964-017-0017-z]
22. Patel KA, Brahmbhatt PK. Response surface methodology based desirability approach for optimization of roller burnishing process parameter. Journal of The Institution of Engineers (India): Series C. 2018;99(6):729-736. [Link] [DOI:10.1007/s40032-017-0368-8]
23. Lienert F, Gerstenmeyer M, Krall S, Lechner C, Trauth D, Bleicher F, et al. Experimental study on comparing intensities of burnishing and machine hammer peening processes. Procedia CIRP. 2016;45:371-374. [Link] [DOI:10.1016/j.procir.2016.02.143]
24. Sedaghati H, Tamizifar M. Wear behavior in micro and Nano-structured WC-9Co-0.7 VC cemented carbide produced by rapid hot press sintering. Advanced Ceramics Progress (ACERP). 2015;1(2):34-39. [Link]
25. Amini S, Kariman SA, Teimouri R. The effects of ultrasonic peening on chemical corrosion behavior of aluminum 7075. The International Journal of Advanced Manufacturing Technology. 2017;91(1-4):1091-102. [Link] [DOI:10.1007/s00170-016-9795-6]
26. Abbasi A, Amini S, Shikhzade G. Investigation of experimental and numerical simulation of residual stresses distribution of rolling mill rolls in ultrasonic peening technology. Modares Mechanical Engineering. 2017;17(7):316-324. [Persian] [Link]
27. Karimi A, Amini S. Steel 7225 surface ultrafine structure and improvement of its mechanical properties using surface nanocrystallization technology by ultrasonic impact. The International Journal of Advanced Manufacturing Technology. 2016;83(5-8):1127-1134. [Link] [DOI:10.1007/s00170-015-7619-8]
28. Amini S, Abbasi A, Shikhzadeh G. Investigation of ultrasonic peening technology on the GSH48 graphite steel. Modares Mechanical Engineering. 2016;16(9):29-36. [Persian] [Link]
29. Amanov A, Cho IS, Pyoun YS, Lee CS, Park IG. Micro-dimpled surface by ultrasonic nanocrystal surface modification and its tribological effects. Wear. 2012;286-287:136-144. [Link] [DOI:10.1016/j.wear.2011.06.001]
30. Bouzid W, Tsoumarev O, Sai K. An investigation of surface roughness of burnished AISI 1042 steel. The International Journal of Advanced Manufacturing Technology. 2004;24(1-2):120-125. [Link] [DOI:10.1007/s00170-003-1761-4]
31. Lotfi M, Amini S, Aghaei M. 3D analysis of surface topography in vibratory turning. The International Journal of Advanced Manufacturing Technology. 2018;95(1-4):197-204. [Link] [DOI:10.1007/s00170-017-1183-3]
32. Rodríguez A, López de Lacalle LN, Celaya A, Lamikiz A, Albizuri J. Surface improvement of shafts by the deep ball-burnishing technique. Surface and Coatings Technology. 2012;206(11-12):2817-2824. [Link] [DOI:10.1016/j.surfcoat.2011.11.045]
33. Prevéy PS, Cammett JT. The influence of surface enhancement by low plasticity burnishing on the corrosion fatigue performance of AA7075-T6. International Journal of Fatigue. 2004;26(9):975-982. [Link] [DOI:10.1016/j.ijfatigue.2004.01.010]
34. Ding H, Shen N, Shin YC. Modeling of grain refinement in aluminum and copper subjected to cutting. Computational Materials Science. 2011;50(10):3016-3025. [Link] [DOI:10.1016/j.commatsci.2011.05.020]
35. Amini S, Baraheni M, Moeini Afzal M. Statistical study of the effect of various machining parameters on delamination in drilling of carbon fiber reinforced composites. Journal of Science and Technology of Composites. 2018;5(1):41-50. [Persian] [Link]
36. Nasr M, Anwar S, El-Tamimi A, Pervaiz S. Minimization of the hole overcut and cylindricity errors during rotary ultrasonic drilling of Ti-6Al-4V. IOP Conference Series: Materials Science and Engineering. 2018;346:Article ID:012059. [Link] [DOI:10.1088/1757-899X/346/1/012059]
37. Moon JH, Baek SM, Lee SG, Seong Y, Amanov A, Lee S, et al. Effects of residual stress on the mechanical properties of copper processed using ultrasonic-nanocrystalline surface modification. Materials Research Letters. 2019;7(3):97-102. [Link] [DOI:10.1080/21663831.2018.1560370]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.