Volume 19, Issue 2 (February 2019)                   Modares Mechanical Engineering 2019, 19(2): 281-291 | Back to browse issues page

XML Persian Abstract Print


1- Mechanical Engineering Department, Engineering Faculty, Ferdowsi University of Mashhad, Mashhad, Iran
2- Mechanical Engineering Department, Engineering Faculty, Ferdowsi University of Mashhad, Mashhad, Iran , imani@um.ac.ir
Abstract:   (7683 Views)
Machining vibration is one of the most important constraints on productivity. This vibration may cause increase in machining costs, lower accuracy of products, and decrease tool life. Active control is one of the conventional methods for dealing with vibration in machining, but designing an optimized controller for machining process due to unknown parameters in the system is challenging. DVF control method with low computational costs and high capability in increasing the performance of the cutting tool is an effective method, but due to increasing in actuator control input, it can cause actuator saturation; thus, it is not an efficient control method. The aim of this research is implementation of a nonlinear fractional PID controller for increasing effectiveness and improving performance of active vibration control on a boring bar. The results of impact control tests indicate that nonlinear PID control algorithm has good performance in reducing vibrations and increasing the damping of the structure. Using the controller performance criteria, the optimal fractional can be chosen for the nonlinear PID controller, which in addition to increasing the damping of the tool, can reduce the power consumption and, thus, prevent the actuator saturation. The results of the cutting tests also show that the nonlinear PID controller reduces control voltage and actuator power with respect to the DVF controller, which results in improving the boundaries of stable machining. Moreover, during impacts in machining process, such as the initial engagement of the tool, the proposed controller results in a significant reduction in the control voltage peak.
Full-Text [PDF 1348 kb]   (5110 Downloads)    
Article Type: Original Research | Subject: Instrumentation
Received: 2018/08/21 | Accepted: 2018/10/21 | Published: 2019/02/2

References
1. 1- Altintas Y. Manufacturing automation: Metal cutting mechanics, machine tool vibrations, and CNC design. 2nd Edition. New York: Cambridge University Press; 2012. pp. 125-132. [Link]
2. Quintana G, Ciurana J. Chatter in machining processes: A review. International Journal of Machine Tools and Manufacture. 2011;51(5):363-376. [Link] [DOI:10.1016/j.ijmachtools.2011.01.001]
3. Munoa J, Beudaert X, Dombovari Z, Altintas Y, Budak E, Brecher C, et al. Chatter suppression techniques in metal cutting. CIRP Annals. 2016;65(2):785-808. [Link] [DOI:10.1016/j.cirp.2016.06.004]
4. Sims ND. Vibration absorbers for chatter suppression: A new analytical tuning methodology. Journal of Sound and Vibration. 2007;301(3-5):592-607. [Link] [DOI:10.1016/j.jsv.2006.10.020]
5. Muhammad BB, Wan M, Feng J, Zhang WH. Dynamic damping of machining vibration: A review. The International Journal of Advanced Manufacturing Technology. 2017;89(9-12):2935-2952. [Link] [DOI:10.1007/s00170-016-9862-z]
6. Naeemi Amini P, Moetakef Imani B. High-performance controller design and evaluation for active vibration control in boring. Scientia Iranica. 2018 Jul. [Link]
7. Ganguli A. Chatter reduction through active vibration damping [Dissertation]. Brussels: Université Libre De Bruxelles; 2005. [Link]
8. Munoa J, Mancisidor I, Loix N, Uriarte LG, Barcena R, Zatarain M. Chatter suppression in ram type travelling column milling machines using a biaxial inertial actuator. CIRP Annals. 2013;62(1):407-410. [Link] [DOI:10.1016/j.cirp.2013.03.143]
9. Bilbao-Guillerna A, Barrios A, Mancisidor I, Loix N, Munoa J. Control laws for chatter suppression in milling using an inertial actuator. Proceedings of ISMA 2010 - International Conference on Noise and Vibration Engineering, Sep 2010, Leuven, Belgium. Lyon: HAL; 2010. p. 1-12. [Link]
10. Chen F, Lu X, Altintas Y. A novel magnetic actuator design for active damping of machining tools. International Journal of Machine Tools and Manufacture. 2014;85:58-69. [Link] [DOI:10.1016/j.ijmachtools.2014.05.004]
11. Preumont A. Vibration control of active structures: An introduction. 3rd Edition. Heidelberg: Springer Science & Business Media; 2011. pp. 131-148. _7 [Link] [DOI:10.1007/978-94-007-2033-6]
12. Ma H, Wu J, Yang L, Xiong Z. Active chatter suppression with displacement-only measurement in turning process. Journal of Sound and Vibration. 2017;401:255-267. [Link] [DOI:10.1016/j.jsv.2017.05.009]
13. Shiraishi M, Yamanaka K, Fujita H. Optimal control of chatter in turning. International Journal of Machine Tools and Manufacture. 1991;31(1):31-43. [Link] [DOI:10.1016/0890-6955(91)90049-9]
14. Parus A, Powałka B, Marchelek K, Domek S, Hoffmann M. Active vibration control in milling flexible workpieces. Journal of Vibration and Control. 2013;19(7):1103-1120. [Link] [DOI:10.1177/1077546312442097]
15. Monnin J, Kuster F, Wegener K. Optimal control for chatter mitigation in milling - part 1: Modeling and control design. Control Engineering Practice. 2014;24:156-166. [Link] [DOI:10.1016/j.conengprac.2013.11.010]
16. Kleinwort R, Schweizer M, Zaeh MF. Comparison of different control strategies for active damping of heavy duty milling operations. Procedia CIRP. 2016;46:396-399. [Link] [DOI:10.1016/j.procir.2016.04.054]
17. Khorshidi K, Rezaei E, Ghadimi AA, Pagoli M. Active vibration control of circular plates coupled with piezoelectric layers excited by plane sound wave. Applied Mathematical Modelling. 2015;39(3-4):1217-1228. [Link] [DOI:10.1016/j.apm.2014.08.007]
18. Gawronski W. Advanced structural dynamics and active control of structures. New York: Springer Science & Business Media; 2004. [Link] [DOI:10.1007/978-0-387-72133-0]
19. Naeemi Amini P, Moetakef Imani B. Identification and control of an active boring bar using VCA actuator. Modares Mechanical Engineering. 2017;17(8):87-96. [Persian] [Link]
20. Han J. From PID to active disturbance rejection control. IEEE Transactions on Industrial Electronics. 2009;56(3):900-906. [Link] [DOI:10.1109/TIE.2008.2011621]
21. Gao Z, Huang Y, Han J. An alternative paradigm for control system design. Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228), 4-7 Dec, Orlando, FL, USA. 2001. Piscataway: IEEE; 2001. [Link]
22. Åström KJ, Hägglund T. PID controllers: Theory, design and tuning. 2nd Edition. USA: Instrument Society of America; 1995. pp. 126-132. [Link]
23. Schultz WC, Rideout VC. Control system performance measures: Past, present, and future. IRE Transactions on Automatic Control. 1961;AC-6(1):22-35. [Link] [DOI:10.1109/TAC.1961.6429306]
24. Krohling RA, Rey JP. Design of optimal disturbance rejection PID controllers using genetic algorithms. IEEE Transactions on Evolutionary Computation. 2001;5(1):78-82. [Link] [DOI:10.1109/4235.910467]

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.