Volume 19, Issue 3 (2019)                   Modares Mechanical Engineering 2019, 19(3): 677-686 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Manzoori A, Fallah F. Study of the stability of atherosclerotic arteries using fluid-structure interaction. Modares Mechanical Engineering. 2019; 19 (3) :677-686
URL: http://journals.modares.ac.ir/article-15-24405-en.html
1- Applied Mechanics Division, Mechanical Engineering School, Sharif University of Technology, Tehran, Iran
2- Applied Mechanics Division, Mechanical Engineering School, Sharif University of Technology, Tehran, Iran , fallah@sharif.ir
Abstract:   (348 Views)
Tortuosity is an abnormality that may occur in some arteries, such as carotid. It can reduce the blood flow to distal organs, and even in severe cases, causes ischemia and stroke. Tortuosity can be congenital or occurs due to hypertension and reduced axial pre-stretch of artery, in which case called buckling. Since atherosclerotic plaques disrupt the normal pattern of blood flow, and thus make the artery more susceptible to buckling, in this study, the effect of atherosclerotic plaques on arterial stability has been investigated using computational simulation of fluid-structure interaction under pulsatile flow and large deformation. Ideal and 3D geometry of normal and atherosclerotic carotid artery with different plaques (symmetric or asymmetric and in different percentage of stenosis) were constructed and used to simulate normal (1.5) and reduced (1.3) axial stretch ratio by ADINA. The blood flow was assumed to be Newtonian and laminar. Arterial wall was considered as an anisotropic and hyperelastic material based on the Ogden’s model. The results are verified by comparison with the available ones in the literature. It is observed that stenosis reduces the critical buckling pressure and arteries with asymmetric plaque have lower critical buckling pressure compared to the arteries with symmetric plaque. By reducing the axial stretch ratio from 1.5 to 1.3, the critical buckling pressure is reduced by 33-39 percent. Buckling increases the peak stress in the plaque and thus increases the risk of plaque rupture.
Full-Text [PDF 810 kb]   (201 Downloads)    

Received: 2018/08/24 | Accepted: 2018/10/28 | Published: 2019/03/1

1. Benjamin EJ, Virani SS, Callaway CW, Chamberlain AM, Chang AR, Cheng S, et al. Heart disease and stroke statistics - 2018 update: A report from the American Heart Association. Circulation. 2018;137(12):e67-e492. [Link] [DOI:10.1161/CIR.0000000000000558]
2. Hansson GK. Inflammation, atherosclerosis, and coronary artery disease. The New England Journal of Medicine. 2005;352(16):1685-1695. [Link] [DOI:10.1056/NEJMra043430]
3. Mitrovska S, Matthiesen I, Jovanova S, Libermans C. Atherosclerosis: Understanding pathogenesis and challenge for treatment. New York: Nova Science Publishers, Incorporated; 2009. p. 36. [Link]
4. Cardoso L, Weinbaum S. Changing views of the biomechanics of vulnerable plaque rupture: A review. Annals of Biomedical Engineering. 2014;42(2):415-431. [Link] [DOI:10.1007/s10439-013-0855-x]
5. Cheng GC, Loree HM, Kamm RD, Fishbein MC, Lee RT. Distribution of circumferential stress in ruptured and stable atherosclerotic lesions, a structural analysis with histopathological correlation. Circulation. 1993;87(4):1179-1187. [Link] [DOI:10.1161/01.CIR.87.4.1179]
6. Lawlor MG, O'Donnell MR, O'Connell BM, Walsh MT. Experimental determination of circumferential properties of fresh carotid artery plaques. Journal of Biomechanics. 2011;44(9):1709-1715. [Link] [DOI:10.1016/j.jbiomech.2011.03.033]
7. Han HC. Twisted blood vessels: Symptoms, etiology and biomechanical mechanisms. Journal of Vascular Research. 2012;49(3):185-197. [Link] [DOI:10.1159/000335123]
8. Han HC. A biomechanical model of artery buckling. Journal of Biomechanics. 2007;40(16):3672-3678. [Link] [DOI:10.1016/j.jbiomech.2007.06.018]
9. Liu Q, Han HC. Mechanical buckling of artery under pulsatile pressure. Journal of Biomechanics. 2012;45(7):1192-1198. [Link] [DOI:10.1016/j.jbiomech.2012.01.035]
10. Han HC. Nonlinear buckling of blood vessels: A theoretical study. Journal of Biomechanics. 2008;41(12):2708-2713. [Link] [DOI:10.1016/j.jbiomech.2008.06.012]
11. Han HC. Blood vessel buckling within soft surrounding tissue generates tortuosity. Journal of Biomechanics. 2009;42(16):2797-2801. [Link] [DOI:10.1016/j.jbiomech.2009.07.033]
12. Khalafvand SS, Han HC. Stability of carotid artery under steady-state and pulsatile blood flow: A fluid-structure interaction study. Journal of Biomechanical Engineering. 2015;137(6):061007. [Link] [DOI:10.1115/1.4030011]
13. Datir P, Lee AY, Lamm SD, Han HC. Effects of geometric variations on the buckling of arteries. International Journal of Applied Mechanics. 2011;3(2):385-406. [Link] [DOI:10.1142/S1758825111001044]
14. Lee AY, Sanyal A, Xiao Y, Shadfan R, Han HC. Mechanical instability of normal and aneurysmal arteries. Journal of Biomechanics. 2014;47(16):3868-3875. [Link] [DOI:10.1016/j.jbiomech.2014.10.010]
15. Sharzehee M, Khalafvand SS, Han HC. Fluid-structure interaction modeling of aneurysmal arteries under steady-state and pulsatile blood flow: A stability analysis. Computer Methods in Biomechanics and Biomedical Engineering. 2018;21(3):219-231. [Link] [DOI:10.1080/10255842.2018.1439478]
16. Yang C, Tang D, Kobayashi S, Zheng J, Woodard PK, Teng Z, et al. Cyclic bending contributes to high stress in a human coronary atherosclerotic plaque and rupture risk: In vitro experimental modeling and Ex vivo MRI-based computational modeling approach. Molecular and Cellular Biomechanics. 2008;5(4):259-274. [Link]
17. Tang D, Yang C, Zheng J, Woodard PK, Sicard GA, Saffitz JE, et al. 3D MRI-based multicomponent FSI models for atherosclerotic plaques. Annals of Biomedical Engineering. 2004;32(7):947-960. [Link] [DOI:10.1023/B:ABME.0000032457.10191.e0]
18. Sanyal A, Han HC. Artery buckling affects the mechanical stress in atherosclerotic plaques. Biomedical Engineering Online. 2015;14(Suppl 1):S4. [Link] [DOI:10.1186/1475-925X-14-S1-S4]
19. Ahmed SA, Giddens DP. Velocity measurements in steady flow through axisymmetric stenoses at moderate Reynolds numbers. Journal of Biomechanics. 1983;16(7):505-507,509-516. [Link] [DOI:10.1016/0021-9290(83)90065-9]
20. Kleinstreuer C. Biofluid dynamics: Principles and selected applications. Boca Raton: CRC press; 2006. [Link] [DOI:10.1201/b15820]
21. Holzapfel GA, Gasser TC, Ogden RW. A new constitutive framework for arterial wall mechanics and a comparative study of material models. Journal of Elasticity and the Physical Science of Solids. 2000;61(1-3):1-48. [Link] [DOI:10.1023/A:1010835316564]
22. Bathe KJ. ADINA theory and modeling guide volume I: ADINA solids & structures. Watertown MA: ADINA R&D; 2012. [Link]
23. Han HC, Ku DN, Vito RP. Arterial wall adaptation under elevated longitudinal stretch in organ culture. Annals of Biomedical Engineering. 2003;31(4):403-411. [Link] [DOI:10.1114/1.1561291]
24. Yao Q, Hayman DM, Dai Q, Lindsey ML, Han HC. Alterations of pulse pressure stimulate arterial wall matrix remodeling. Journal of Biomechanical Engineering. 2009;131(10):101011. [Link] [DOI:10.1115/1.3202785]

Add your comments about this article : Your username or Email:

Send email to the article author