Volume 19, Issue 4 (2019)                   Modares Mechanical Engineering 2019, 19(4): 947-957 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Soleymani A, Nosratollahi M, Sadati S. Decision-Making System Design for Satellite Temperature Management in the Presence of Fluid Momentum Controller Actuators Fault. Modares Mechanical Engineering. 2019; 19 (4) :947-957
URL: http://journals.modares.ac.ir/article-15-24550-en.html
1- Space Engineering Department, Aerospace Engineering Faculty, Malek-Ashtar University of Technology, Tehran, Iran
2- Space Engineering Department, Aerospace Engineering Faculty, Malek-Ashtar University of Technology, Tehran, Iran , nosratolahi@mut.ac.ir
Abstract:   (567 Views)
The aim of this paper is designing a decision-making system (DMS) for temperature management of the satellite plates in the presence of actuators faults. The thermal stresses caused by solar radiation pressure perturbations is considered as a threat to the mission of satellites. In this paper, a new mechanism is used, which includes 4 fluidic momentum controller (FMC) actuators for sustaining the situation and performing various satellite missions in a pyramid. In this case, it is assumed that the satellite's plates are exposed to solar perturbations, and as a result, various faults have occurred for satellite actuators. To detect and isolate the defect of each actuator, recordable data from satellite and actuators are stored and feature extraction of these data is executed by linear differentiation analysis methods and analysis of the main components. To evaluate these methods, the confidence matrix is used, and the K-nearest neighborhood method is selected as the optimal method. To solve the temperature problem of the plates, the DMS is designed, so that if one of the plates reaches critical temperature, after examining the occurrence of a fault and adopting the appropriate strategy, the plate's rotation of the target plate is in the shadow. As a result, the temperature of the plate with the maximum temperature will reduce. The simulation results show that despite the perturbations and actuators’ faults, the designed DMS can manage the temperature of the plates somehow that does not enter the critical point.
Full-Text [PDF 968 kb]   (288 Downloads)    

Received: 2018/08/28 | Accepted: 2018/11/19 | Published: 2019/04/6

References
1. Lurie BJ, Schier JA. Satellite attitude stabilization using fluid rings. Acta Mechanica. 2009;208(1-2):117-131. [Link] [DOI:10.1007/s00707-008-0132-5]
2. Tayebi J, Soleymani A. A comparative study of CMG and FMC actuators for nano satellite attitude control system-pyramidal configuration. 7th International Conference on Recent Advances in Space Technologies (RAST), 16-19 June, 2015, Istanbul, Turkey. Piscataway: IEEE; 2015. [Link] [DOI:10.1109/RAST.2015.7208370]
3. Kurokawa H. Survey of theory and steering laws of single-gimbal control moment gyros. Journal of Guidance, Control, and Dynamics. 2007;30(5):1331-1340. [Link] [DOI:10.2514/1.27316]
4. Jones LL, Zeledon RA, Peck MA. Generalized framework for linearly constrained control moment gyro steering. Journal of Guidance, Control, and Dynamics. 2012;35(4):1094-1103. [Link] [DOI:10.2514/1.56207]
5. Margulies G, Aubrun JN. Geometric theory of single-gimbal control moment gyro system. Journal of the Astronautical Sciences. 1978;26(2):159-191. [Link]
6. Meng T, Matunaga S. Failure-tolerant control for small agile satellites using single-gimbal control moment gyros and magnetic torquers. Acta Mechanica Sinica. 2012;28(2):551-558. [Link] [DOI:10.1007/s10409-012-0044-4]
7. Tang L, Xu Sh. Geometric analysis of singularity for single- gimbal control moment gyro systems. Chinese Journal of Aeronautics.2005;18(4):295-303. [Link] [DOI:10.1016/S1000-9361(11)60248-3]
8. Jin L, Xu Sh. An improved constrained steering law for SGCMGs with DPC. Acta Mechanica Sinica.2009;25(5):713-720. [Link] [DOI:10.1007/s10409-009-0269-z]
9. Zhang JR, Rachid A, Zhang Y. Attitude control for part actuator failure of agile small satellite. Acta Mechanica Sinica. 2008;24(4):463-468. [Link] [DOI:10.1007/s10409-008-0153-2]
10. Jin L, Xu Sh. An improved constrained steering law for SGCMGs with DPC. Acta Mechanica Sinica. 2009;25(5):713-720. [Link] [DOI:10.1007/s10409-009-0269-z]
11. Jin L, Xu Sh. Fault tolerant attitude control for small satellites using single gimbal control moment gyros and magnetic torquers. Journal of Aerospace Engineering. 2014;28(3):401-407. [Link]
12. Noumi A, Takahashi M, Kanzawa T, Haruki M. Fault-tolerant attitude control systems using multi-objective optimization for a spacecraft equipped with control moment gyros. AIAA Guidance, Navigation, and Control Conference, 5-9 January, 2015, Kissimmee, Florida. Reston: AIAA; 2015. [Link] [DOI:10.2514/6.2015-1088]
13. Akau RL, Behr VL, Whitaker R. Thermal design of the fast-on-orbit recording of transient events (FORTE) satellite. 8th Annual AIAA/USU, Conference on Small Satellites, 29 August-1 September, 1994, Utah, USA; 1994. [Link]
14. Sozbir N, Bulut M, Oktem MF, Kahriman A, Chaix A. Design of thermal control subsystem for TUSAT telecommunication satellite. International Journal of Electrical, Computer, Energetic, Electronic and Communication Engineering. 2008;2(7):1384-1387. [Link]
15. Cheng W, Liu N, Li Z, Zhong Q, Wang A, Zhang Z, et al. Application study of a correction method for a spacecraft thermal model with a Monte-Carlo hybrid algorithm. Chinese Science Bulletin. 2011;56(13):1407-1412. [Link] [DOI:10.1007/s11434-010-4053-z]
16. Gerhart Ch. University nanosat system thermal design, analysis, and testing. SPIE Defense & Security Symposium, 18-20 April, 2006, Orlando (Kissimmee), Florida, United States. Bellingham: SPIE; 2006. [Link] [DOI:10.1117/12.667770]
17. Chandrasekaran V, Subramanian ER. Transient thermal analysis of a nanosatellite in low earth orbit. Proceedings of 8th International Conference on Engineering Computational Technology, 4-7 September, 2012, Stirlingshire, UK. Stirlingshire: Civil-Comp Press; 2012. [Link]
18. Nosratollahi M, Soleymani A, Sadati H. Design of satellite's combined attitude and thermal control system equipped with FMC actuators. Modares Mechanical Engineering. 2018;18(1):122-130. [Persian] [Link]
19. Waswa PMB, Elliot M, Hoffman JA. Spacecraft Design-for-Demise implementation strategy & decision-making methodology for low earth orbit missions. Advances in Space Research. 2013;51(9):1627-1637. [Link] [DOI:10.1016/j.asr.2012.11.020]
20. Kreinovich V, Nguyen HT, Starks SA, Yam Y. Decision making based on satellite images: Optimal fuzzy clustering approach. Proceedings of the 37th IEEE Conference on Decision and Control, 18 December, 1998, Florida, USA. Piscataway: IEEE; 1998. [Link] [DOI:10.1109/CDC.1998.761970]
21. Wie B. Space vehicle dynamics and control. 2nd Edition. Reston: AIAA; 1998. pp. 305-320. [Link]
22. Nobari NA, Misra AK. Attitude dynamics and control of satellites with fluid ring actuators. Journal of Guidance Control and Dynamics. 2012;35(6):1855-1864. [Link] [DOI:10.2514/1.54599]
23. Nobari NA, Misra AK. A hybrid attitude controller consisting of electromagnetic torque rods and an active fluid ring. Acta Astronautica. 2014;94(1):470-479. [Link] [DOI:10.1016/j.actaastro.2012.12.012]
24. Thunnissen DP, Tsuyuki GT. Margin determination in the design and development of a thermal control system. 34th International Conference on Environmental Systems (ICES), 19-22 July, 2004, Colorado Springs, Colorado, United States; 2004. [Link] [DOI:10.4271/2004-01-2416]
25. Bolduc C, Adourian C. Rapid thermal analysis of rigid three-dimensional bodies with the use of modelica physical modelling language. Proceedings of the 7th International Modelica Conference, 20-22 September, 2009, Como, Italy. Linköping: Linköping University Electronic Press; 2009. [Link] [DOI:10.3384/ecp09430036]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author