Volume 19, Issue 3 (2019)                   Modares Mechanical Engineering 2019, 19(3): 731-742 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Mir A, Aghaie-Khafri M. Study of Damage Propagation and Life Assessment in High Temperature Cyclic Loading. Modares Mechanical Engineering. 2019; 19 (3) :731-742
URL: http://journals.modares.ac.ir/article-15-25309-en.html
1- Materials Science & Engineering Faculty, K. N. Toosi University of Technology, Tehran, Iran
2- Materials Science & Engineering Faculty, K. N. Toosi University of Technology, Tehran, Iran , maghaei@kntu.ac.ir
Abstract:   (316 Views)
The aim of this study is to investigate the life-span according to the damage caused by the main mechanisms of damage development in turbine blades and to model the growth of the damage. For this purpose, the low cycle fatigue test on martensitic 410 stainless steel was immersed in tempered glass at 565°C in three strain gauges 0.8, 1 and 1.5 with a constant temperature of 500°C and 15 seconds per cycle. The effect of creep-fatigue interaction on life and also damage to turbine blade in different conditions was investigated. The results showed that with the variation of the strain amplitude from 0.8 to 1.5, the life of the piece varies from 205 to 65 cycles and this is while the level of failure of the samples varies. In the next step, the modified Coffin-Manson model was used to indicate the damage and its simultaneous effect on the life of the piece. The results showed that decreasing the number of grain boundaries and its effect on the cavities created in the piece decreases the damage and thus the life of the turbine blade increases. High-temperature tensile tests and low-tensile fatigue-temperature control were also performed in different tempering modes for 410 and 420 steel stainless steel and The results showed that, under the same conditions, the temperature increase from 200 to 565°C resulted in a decrease in life from 2218 to 1952 cycles.
Full-Text [PDF 1669 kb]   (517 Downloads)    

Received: 2018/09/21 | Accepted: 2018/11/15 | Published: 2019/03/1

References
1. Viswanathan R. Damage mechanisms and life assessment of high temperature components. 1st Edition. Russell Township: ASM International; 1989. [Link]
2. Brostmeyer JD, Jones RB, inventors. Apparatus and process for converting an aero gas turbine engine into an industrial gas turbine engine for electric power production United States patent US 20180010476A1. 2018 Jan 11. [Link]
3. Gonzalez-Rodriguez JG, Salinas-Bravo VM, Ramlrez-Monta-o JM. A study of the stress corrosion cracking susceptibility of AISI 410 steel in steam turbine environments using electrochemical noise. Corrosion Reviews. 1996;14(3-4):309-322. [Link] [DOI:10.1515/CORRREV.1996.14.3-4.309]
4. Dalmau A, Richard C, Igual-Mu-oz A. Degradation mechanisms in martensitic stainless steels: Wear, corrosion and tribocorrosion appraisal. Tribology International. 2018;121:167-179. [Link] [DOI:10.1016/j.triboint.2018.01.036]
5. Mazur Z, Luna-Ramírez A, Juárez-Islas JA, Campos-Amezcua A. Failure analysis of a gas turbine blade made of Inconel 738LC alloy. Engineering Failure Analysis. 2005;12(3):474-486. [Link] [DOI:10.1016/j.engfailanal.2004.10.002]
6. Banaszkiewicz M. Numerical investigations of crack initiation in impulse steam turbine rotors subject to thermo-mechanical fatigue. Applied Thermal Engineering. 2018;138:761-773. [Link] [DOI:10.1016/j.applthermaleng.2018.04.099]
7. Koul AK, Castillo R. Assessment of service induced microstructural damage and its rejuvenation in turbine blades. Metallurgical Transactions A. 1988;19(8):2049-2066. [Link] [DOI:10.1007/BF02645208]
8. Yamamoto M, Ogata T. Microscopic damage mechanism of nickel-based superalloy Inconel 738LC under creep-fatigue conditions. Journal of Engineering Materials and Technology. 2000;122(3):315-320. [Link] [DOI:10.1115/1.482803]
9. Novovic D, Dewes RC, Aspinwall DK, Voice W, Bowen P. The effect of machined topography and integrity on fatigue life. International Journal of Machine Tools and Manufacture. 2004;44(2-3):125-134. [Link] [DOI:10.1016/j.ijmachtools.2003.10.018]
10. Sabour MH, Bhat RB. Lifetime prediction in creep-fatigue environment. Materials Science-Poland. 2008;26(3):563-584. [Link]
11. Shariati M. Experimental investigation of crack initiation and fatigue life of spot weld coach peel specimens. Modares Mechanical Engineering. 2008;8(1):99-114. [Persian] [Link]
12. Shariati M, Mehrabi H. Experimental study of ratcheting influence on fatigue life of Ck45 in uniaxial cyclic loading. Modares Mechanical Engineering. 2013;13(10):75-83. [Persian] [Link]
13. Gozin MH, Aghaei Khafri M. Experimental and numerical investigation of overload effects on fatigue life of AISI 4140 steel. Modares Mechanical Engineering. 2014;14(4):54-64. [Persian] [Link]
14. Lei Q, Zhu SP, Huang HZ, Yue P. A new creep-fatigue life prediction model based on mean strain rate. 3rd International Conference on Materials and Reliability; 2015 Nov. 23-25; Jeju, Korea. 2015. [Link]
15. Rasti A, Sadeghi MH, Sabbaghi Farshi S. Evaluation of surface roughness effect on fatigue life in drilling of hardened steel. Modares Mechanical Engineering. 2018;18(1):103-110. [Persian] [Link]
16. Binesh B, Aghaie Khafri M, Daneshi M. Simulation and experimental study of severe plastic deformation of 7075 Al alloy processed by repetitive upsetting-extrusion. Modares Mechanical Engineering. 2017;17(8):323-332. [Persian] [Link]
17. Sabbaghi Farshi S, Rasti A, Sadeghi MH, Hashemi Khosrowshahi J. Investigation of interference fit and its effect on fatigue life in hardened steel. Modares Mechanical Engineering. 2017;17(10):420-428. [Persian] [Link]
18. Taghizadeh H, Chakherlou TN. Experimental investigation and numerical simulation of the fatigue behavior of interference fitted specimens subjected to bolt clamping force. Modares Mechanical Engineering. 2018;17(11):247-258. [Persian] [Link]
19. Nam SW. Assessment of damage and life prediction of austenitic stainless steel under high temperature creep-fatigue interaction condition. Materials Science and Engineering A. 2002;322(1-2):64-72. [Link] [DOI:10.1016/S0921-5093(01)01118-2]
20. Hong JW, Nam SW, Rie KT. A model for life prediction in low-cycle fatigue with hold time. Journal of Materials Science. 1985;20(10):3763-3770. [Link] [DOI:10.1007/BF01113785]
21. Parvin H, Kazeminezhad M. Development a dislocation density based model considering the effect of stacking fault energy: Severe plastic deformation. Computational Materials Science. 2014;95:250-255. [Link] [DOI:10.1016/j.commatsci.2014.07.027]
22. Momeni A, Dehghani K, Ebrahimi GR. Modeling the initiation of dynamic recrystallization using a dynamic recovery model. Journal of Alloys and Compounds. 2011;509(39):9387-9393. [Link] [DOI:10.1016/j.jallcom.2011.07.014]
23. Baik S, Raj R. Mechanisms of creep-fatigue interaction. Metallurgical Transactions A. 1982;13(7):1215-1221. [Link] [DOI:10.1007/BF02645504]
24. Grange RA, Hribal CR, Porter LF. Hardness of tempered martensite in carbon and low-alloy steels. Metallurgical Transactions A. 1977;8(11):1775-1785. [Link] [DOI:10.1007/BF02646882]
25. Dieter GE. Mechanical metallurgy. 3rd Edition. New York: McGraw-hill; 1986. [Link]
26. Roessle ML, Fatemi A. Strain-controlled fatigue properties of steels and some simple approximations. International Journal of Fatigue. 2000;22(6):495-511. [Link] [DOI:10.1016/S0142-1123(00)00026-8]
27. Murakam Y, Nomoto T, Ueda T. Factors influencing the mechanism of superlong fatigue failure in steels. Fatigue and Fracture of Engineering Materials and Structures. 1999;22(7):581-590. [Link] [DOI:10.1046/j.1460-2695.1999.00187.x]
28. Choi BG, Nam SW, Yoon YC, Kim JJ. Characterization of the cavity nucleation factor for life prediction under creep-fatigue interaction. Journal of Materials Science. 1996;31(18):4957-4966. [Link] [DOI:10.1007/BF00355887]
29. Raj R, Ashby MF. Intergranular fracture at elevated temperature. Acta Metallurgica. 1975;23(6):653-666. [Link] [DOI:10.1016/0001-6160(75)90047-4]
30. Lonsdale D, Flewitt PE. Damage accumulation and microstructural changes occurring during the creep of a 214% Cr1% Mo steel. Materials Science and Engineering. 1979;39(2):217-229. [Link] [DOI:10.1016/0025-5416(79)90061-2]
31. Weertman J. Hull-Rimmer grain boundary void growth theory-A correction. Scripta Metallurgica. 1973;7(10):1129-1130. [Link] [DOI:10.1016/0036-9748(73)90027-6]
32. Christien F, Le Gall R. Ultra-fast grain boundary diffusion and its contribution to surface segregation on a martensitic steel. Experiments and modeling. Surface Science. 2011;605(17-18):1711-1718. [Link] [DOI:10.1016/j.susc.2011.06.003]
33. Bouwer EJ. Theoretical investigation of particle deposition in biofilm systems. Water Research. 1987;21(12):1489-1498. [Link] [DOI:10.1016/0043-1354(87)90132-1]
34. Stephens RI, Fatemi A, Stephens RR, Fuchs HO. Metal fatigue in engineering. 2nd Edition. New York: John Wiley & Sons; 2000. [Link]
35. Torres MAS, Voorwald HJC. An evaluation of shot peening, residual stress and stress relaxation on the fatigue life of AISI 4340 steel. International Journal of Fatigue. 2002;24(8):877-886. [Link] [DOI:10.1016/S0142-1123(01)00205-5]
36. Lin YC, Chen SC. Effect of residual stress on thermal fatigue in a type 420 martensitic stainless steel weldment. Journal of Materials Processing Technology. 2003;138(1-3):22-27. https://doi.org/10.1016/S0924-0136(03)00043-8 [Link] [DOI:10.1016/S0924-0136(97)00036-8]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author