Volume 18, Issue 9 (12-2018)                   Modares Mechanical Engineering 2018, 18(9): 46-57 | Back to browse issues page

XML Persian Abstract Print


1- student
2- Member of univesity of Birjand
3- kerman
4- birjand uni
5- null
Abstract:   (7873 Views)
Polymer Electrolyte Membrane Fuel Cells (PEMFCs) has been widely used in recent decades due to operating at low temperature with high energy density. Water management is one of the main challenges for the development and commercialization of PEMFCs, which has a significant impact on their performance. The behavior of liquid water in the PEMFCs is very important. In this study a pore scale model is used to investigate liquid water transport in the gas diffusion layer (GDL) of PEMFCs. The GDL layer generated by randomly placing circular solid particles. The pseudo-potential lattice Boltzmann (LB) proposed by shan and chen is used to simulate two phase flow. The code was validated in three modes and is verified correctly then, the effect of three pore size particles, porosity coefficient and hydrophobicity of the GDL on the water transfer has been investigated. The results show that, over time, the amount of saturation in the GDL increases and ultimately reaches a constant value. In addition to by reducing the diameter of the particles, the amount of saturation and the number of breakthrough sites decreased, which increases the oxygen penetration.Also, the amount of local water saturation in the catalyst layer (CL) interface and the GDL tends toward one, indicating that oxygen molecules in these regions should be dissolved in water and then fed to the CL. In addition to, the amount of liquid water inside the porous layer decreases with increasing hydrophobicity
Full-Text [PDF 4606 kb]   (4691 Downloads)    
Subject: Aerospace Structures
Received: 2018/09/25 | Accepted: 2018/09/25 | Published: 2018/09/25

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.