Volume 20, Issue 1 (January 2020)                   Modares Mechanical Engineering 2020, 20(1): 157-169 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Delbaznasab L, Pournaderi S, Bazrafkan M. Numerical Simulation of a Non-Newtonian Droplet under an Electric Field. Modares Mechanical Engineering 2020; 20 (1) :157-169
URL: http://mme.modares.ac.ir/article-15-26026-en.html
1- Mechanical Engineering Department, Engineering Faculty, Yasouj University, Yasouj, Iran
2- Mechanical Engineering Department, Engineering Faculty, Yasouj University, Yasouj, Iran , sp.pournaderi@yu.ac.ir
Abstract:   (2689 Views)

In this research, the deformation of a non-Newtonian leaky-dielectric droplet suspended in another non-Newtonian fluid under a uniform electric field is simulated. The aim of this research is the studying the effect of the electric field on the hydrodynamic of non-Newtonian droplets and also the comparison between the behavior of Newtonian and non-Newtonian droplets in the presence of an electric field. The power law model is used to describe non-Newtonian fluid behavior. The level set method is employed to determine the location of the interface. Also, the ghost fluid method is used to apply discontinuities at the interface. By applying an electric field, a non-Newtonian droplet deforms similarly to a Newtonian one. This deformation may occur either in the direction of the electric field or perpendicular to it. By increasing the electric Capillary number (ratio of electric force to surface tension force) the deformation of the non-Newtonian droplet with different power law constants increases. In this research, the behavior of different non-Newtonian droplets with different power constants was compared and it was observed that by an increase in the power law constant the drop deformation increases. According to the results, the deformation of a shear-thinning droplet under an electric field is less than the deformation of a Newtonian droplet and the deformation of a Newtonian droplet is less than the deformation of a shear thickening droplet.

Full-Text [PDF 1180 kb]   (2279 Downloads)    
Article Type: Original Research | Subject: Computational Fluid Dynamic (CFD)
Received: 2018/10/13 | Accepted: 2019/05/7 | Published: 2020/01/20

References
1. Oliveira MSN, Yeh R, McKinley GH. Iterated stretching, extensional rheology and formation of beads-on-a-string structures in polymer solutions. Journal of Non-Newtonian Fluid Mechanics. 2006;137(1-3):137-148. [Link] [DOI:10.1016/j.jnnfm.2006.01.014]
2. Boufarguine M, Renou F, Nicolai T, Benyahia L. Droplet deformation of a strongly shear thinning dense suspension of polymeric micelles. Rheologica Acta. 2010;49(6):647-655. [Link] [DOI:10.1007/s00397-009-0424-2]
3. Tomar G, Biswas G, Sharma A, Welch SWJ. Influence of electric field on saturated film boiling. Physics of Fluids. 2009;21(3):032107. [Link] [DOI:10.1063/1.3095917]
4. Teigen KE, Munkejord ST. Sharp-interface simulations of drop deformation in electric fields. IEEE Transactions on Dielectrics and Electrical Insulation. 2009;16(2):475-482. [Link] [DOI:10.1109/TDEI.2009.4815181]
5. Teigen KE, Munkejord ST. Influence of surfactant on drop deformation in an electric field. Physics of Fluids. 2010;22(11):112104. [Link] [DOI:10.1063/1.3504271]
6. Gambhire P, Thaokar RM. Electrohydrodynamic instabilities at interfaces subjected to alternating electric field. Physics of Fluids. 2010;22(6):064103. [Link] [DOI:10.1063/1.3431043]
7. López-Herrera JM, Popinet S, Herrada MA. A charge-conservative approach for simulating electrohydrodynamic two-phase flows using volume-of-fluid. Journal of Computational Physics. 2011;230(5):1939-1955. [Link] [DOI:10.1016/j.jcp.2010.11.042]
8. Paknemat H, Pishevar AR, Pournaderi P. Numerical simulation of drop deformations and breakup modes caused by direct current electric fields. Physics of Fluids. 2012;24(10):102101. [Link] [DOI:10.1063/1.4754737]
9. Bararnia H, Ganji DD. Breakup and deformation of a falling droplet under high voltage electric field. Advanced Powder Technology. 2013;24(6):992-998. [Link] [DOI:10.1016/j.apt.2013.01.015]
10. Yang Q, Li BQ, Ding Y. 3D phase field modeling of electrohydrodynamic multiphase flows. International Journal of Multiphase Flow. 2013;57:1-9. [Link] [DOI:10.1016/j.ijmultiphaseflow.2013.06.006]
11. Lima NC, D'Avila MA. Numerical simulation of electrohydrodynamic flows of Newtonian and viscoelastic droplets. Journal of Non-Newtonian Fluid Mechanics. 2014;213:1-14. [Link] [DOI:10.1016/j.jnnfm.2014.08.016]
12. Tian-yu Z, Qing-guo Ch, Wen L, Chun-hui S, Xin-tao W. Analysis of deformation and breakup of droplets in high voltage AC electric field. 9th International Forum on Strategic Technology (IFOST), 2014 October 21-23, Cox's Bazar, Bangladesh. Piscataway: IEEE; 2014. [Link] [DOI:10.1109/IFOST.2014.6991119]
13. Lanauze JA, Walker LM, Khair AS. The influence of inertia and charge relaxation on electrohydrodynamic drop deformation. Physics of Fluids. 2013;25(11):112101. [Link] [DOI:10.1063/1.4826609]
14. Hu WF, Lai MC, Young YN. A hybrid immersed boundary and immersed interface method for electrohydrodynamic simulations. Journal of Computational Physics. 2015;282:47-61. [Link] [DOI:10.1016/j.jcp.2014.11.005]
15. Gong H, Peng Y, Yang Z, Shang H, Zhang X. Stable deformation of droplets surface subjected to a high-voltage electric field in oil. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2015;468:315-321. [Link] [DOI:10.1016/j.colsurfa.2014.12.059]
16. He L, Huang X, Luo X, Yan H, Lü Y, Yang D, et al. Numerical study on transient response of droplet deformation in a steady electric field. Journal of Electrostatics. 2016;82:29-37. [Link] [DOI:10.1016/j.elstat.2016.05.002]
17. Vivacqua V, Ghadiri M, Abdullah AM, Hassanpour A, Al-Marri MJ, Azzopardi B, et al. Analysis of partial electrocoalescence by Level-Set and finite element methods. Chemical Engineering Research and Design. 2016;114:180-189. [Link] [DOI:10.1016/j.cherd.2016.08.019]
18. Wang T, Li HX, Zhao JF. Three-dimensional numerical simulation of bubble dynamics in microgravity under the influence of nonuniform electric fields. Microgravity Science and Technology. 2016;28(2):133-142. [Link] [DOI:10.1007/s12217-016-9490-0]
19. Huang X, He L, Luo X, Yang D, Shi K, Yan H. Breakup mode transformation of leaky dielectric droplet under direct current electric field. International Journal of Multiphase Flow. 2017;96:123-133. [Link] [DOI:10.1016/j.ijmultiphaseflow.2017.07.007]
20. Rayatinezhad M, Pournaderi P. Electric field effect on the hydrodynamic and evaporation of a dielectric drop. Journal of Mechanical Engineering. 2017;47(1):113-122. [Persian] [Link]
21. Mhatre S. Dielectrophoretic motion and deformation of a liquid drop in an axisymmetric non-uniform AC electric field. Sensors and Actuators B: Chemical. 2017;239:1098-1108. [Link] [DOI:10.1016/j.snb.2016.08.059]
22. He L, Yan H, Luo X, Cao J, Wang J, Yang D. Study on the transient response of water-in-oil droplet interface to electric field. Chemical Engineering Research and Design. 2017;118:71-80. [Link] [DOI:10.1016/j.cherd.2016.12.007]
23. Luo X, Huang X, Yan H, Yang D, Wang J, He L. Breakup modes and criterion of droplet with surfactant under direct current electric field. Chemical Engineering Research and Design. 2018;132:822-830. [Link] [DOI:10.1016/j.cherd.2018.02.033]
24. Santra S, Mandal Sh, Chakraborty S. Electrohydrodynamics of confined two-dimensional liquid droplets in uniform electric field. Physics of Fluids. 2018;30(6):062003. [Link] [DOI:10.1063/1.5026450]
25. Xia Y, Reboud JL. Hydrodynamic and electrostatic interactions of water droplet pairs in oil and electrocoalescence. Chemical Engineering Research and Design. 2019;144:472-482. [Link] [DOI:10.1016/j.cherd.2019.02.012]
26. Cui Y, Wang N, Liu H. Numerical study of droplet dynamics in a steady electric field using a hybrid lattice Boltzmann and finite volume method. Physics of Fluids. 2019;31(2):022105. [Link] [DOI:10.1063/1.5080210]
27. Wang N, Liu H, Zhang Ch. Deformation and breakup of a confined droplet in shear flows with power-law rheology. Journal of Rheology. 2017;61(4):741-758. [Link] [DOI:10.1122/1.4984757]
28. Liu XD, Osher S, Chan T. Weighted essentially non-oscillatory schemes. Journal of Computational Physics. 1994;115(1):200-212. [Link] [DOI:10.1006/jcph.1994.1187]
29. Kang M, Fedkiw RP, Liu XD. A boundary condition capturing method for multiphase incompressible flow. Journal of Scientific Computing. 2000;15(3):323-360. [Link] [DOI:10.1023/A:1011178417620]
30. Osher SJ, Fedkiw R. Level set methods and dynamic implicit surfaces. New York: Springer-Verlag; 2003. [Link] [DOI:10.1007/b98879]
31. Pournaderi P, Pishevar AR. A numerical investigation of droplet impact on a heated wall in the film boiling regime. Heat and Mass Transfer. 2012;48(9):1525-1538. [Link] [DOI:10.1007/s00231-012-0999-5]
32. Nazari H, Pournaderi P. The electric field effect on the droplet collision with a heated surface in the Leidenfrost regime. Acta Mechanica. 2019;230(3):787-804. [Link] [DOI:10.1007/s00707-018-2323-z]
33. Pournaderi P, Pishevar AR. The effect of the surface inclination on the hydrodynamics and thermodynamics of leidenfrost droplets. Journal of Mechanics. 2014;30(2):145-151. [Link] [DOI:10.1017/jmech.2014.11]
34. Liu XD, Fedkiw RP, Kang M. A boundary condition capturing method for Poisson's equation on irregular domains. Journal of Computational Physics. 2000;160(1):151-178. [Link] [DOI:10.1006/jcph.2000.6444]
35. Emdadi M, Pournaderi P. Study of droplet impact on a wall using a sharp interface method and different contact line models. Journal of Applied Fluid Mechanics. 2019;12(4):1001-1012. [Link] [DOI:10.29252/jafm.12.04.29029]
36. Chai Z, Shi B, Guo Z, Rong F. Multiple-relaxation-time lattice Boltzmann model for generalized Newtonian fluid flows. Journal of Non-Newtonian Fluid Mechanics. 2011;166(5-6):332-342. [Link] [DOI:10.1016/j.jnnfm.2011.01.002]
37. Taylor GI. Studies in electrohydrodynamics. I. The circulation produced in a drop by an electric field. Proceedings of the Royal Society A: Mathematical,Physical and Engineering Sciences. 1966;291(1425):159-166. [Link] [DOI:10.1098/rspa.1966.0086]
38. Ajayi OO. A note on Taylor's electrohydrodynamic theory. Proceedings of the Royal Society A: Mathematical,Physical and Engineering Sciences. 1978;364(1719):499-507 [Link] [DOI:10.1098/rspa.1978.0214]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.