Volume 19, Issue 8 (August 2019)                   Modares Mechanical Engineering 2019, 19(8): 1827-1836 | Back to browse issues page

XML Persian Abstract Print


1- Mechanical Engineering Department, Engineering Faculty, Najafabad Branch, Islamic Azad University, Najafabad, Iran
2- Mechanical Engineering Department, Engineering Faculty, Najafabad Branch, Islamic Azad University, Najafabad, Iran , soleimani@pmc.iaun.ac.ir
3- Department of Mechanical Engineering, Eindhoven University of Technology
Abstract:   (7249 Views)
High speed atomic force microscopy (HS-AFM) is one of the widely used techniques in nanotechnology applications due to high resolution and the ability of 3D imaging. Despite its advantages and although it is known as a nondestructive technique, tip or sample damage can occur if maximum repulsive force is higher than the failure stress of the sample or tip, as a result of tip-sample interactions. Several studies in understanding the peak repulsive forces in tapping mode AFM have been carried out, but mostly in steady state situations. In transient situation when tip encounters a sudden steep upward step, the repulsive force can be much higher than that in the steady state situation and, consequently, damage could happen. Therefore, if appropriate parameters’ values are not tuned, the tip-sample stress may exceed yield stress of the tip or the sample. This paper presents the comparison of maximum transient interaction forces in time periods of net attractive and repulsive forces and the effects of important scanning parameters on maximum transient stress of compliant samples with the elastic modulus in the range of 2GPa together with lateral resolution and scanning speed diagrams, using theoretical analysis as a novelty of this paper, so that selecting cantilever stiffness in the range of 0.1-1N/m, free air amplitude 60-100nm, amplitude ratio 0.8-0.9, quality factor 50-100, tip radius 10-40 nm, and scanning speed 0.1-0.3mm/s relative to required lateral resolution indeed leads to safe high speed microscopy.
Full-Text [PDF 1197 kb]   (2109 Downloads)    
Article Type: Original Research | Subject: Mechatronics
Received: 2018/10/12 | Accepted: 2019/01/15 | Published: 2019/08/12

References
1. Binnig G, Quate CF, Gerber Ch. Atomic force microscope. Physical Review Letters. 1986;56(9):930-933. [Link] [DOI:10.1103/PhysRevLett.56.930]
2. Binnig G, Gerber Ch, Stoll E, Albrecht TR, Quate CF. Atomic resolution with atomic force microscope. Europhysics Letters. 1987;3(12):1281-1286. [Link] [DOI:10.1209/0295-5075/3/12/006]
3. Custance O, Perez R, Morita S. Atomic force microscopy as a tool for atom manipulation. Nature Nanotechnology. 2009;4(12):803-810. [Link] [DOI:10.1038/nnano.2009.347]
4. Korayem MH, Esmaeilzadehha S, Rahmani N, Shahkarami M. Nano manipulation with rectangular cantilever of atomic force microscope in a virtual reality environment. Digest Journal of Nanomaterials and Biostructures. 2012;7(2):435-445. [Link]
5. Habibnejad Korayem M, Estaji M, Homayooni A. Molecular dynamic modeling of bioparticles nanomanipulation based on AFM: Investigating substrate effects. Modares Mechanical Engineering. 2017;17(3):437-445. [Persian] [Link]
6. Naderi Sohi A, Naderimanesh H, Soleimani M. A comparative study on utility of Scanning Electron Microscopy and Atomic Force Microscopy for topological investigation of electrospun nanofibers as the cell culture scaffolds. Modares Journal of Biotechnology. 2016;7(2):40-50. [Persian] [Link]
7. Tang Q, Shi SQ, Zhou L. Nanofabrication with atomic force microscopy. Journal of Nanoscience and Nanotechnology. 2004;4(8):948-963. [Link] [DOI:10.1166/jnn.2004.131]
8. Liu M, Amro NA, Liu GY. Nanografting for surface physical chemistry. Annual Review of Physical Chemistry. 2008;59:367-386. [Link] [DOI:10.1146/annurev.physchem.58.032806.104542]
9. Sadeghian H, Herfst R, Winters J, Crowcombe W, Kramer G, van den Dool T, et al. Development of a detachable high speed miniature scanning probe microscope for large area substrates inspection. Review of Scientific Instruments. 2015;86(11):113706. [Link] [DOI:10.1063/1.4936270]
10. Sadeghian H, Herfst R, Dekker B, Winters J, Bijnagte T, Rijnbeek R. High-throughput atomic force microscopes operating in parallel. Review of Scientific Instruments. 2017;88(3):033703. [Link] [DOI:10.1063/1.4978285]
11. Borionettia G, Bazzalia A, Orizioa R. Atomic force microscopy: A powerful tool for surface defect and morphology inspection in semiconductor industry. The European Physical Journal Applied Physics. 2004;27(1-3):101-106. [Link] [DOI:10.1051/epjap:2004129]
12. Maas DJ, Fliervoet T, Herfst R, van Veldhoven E, Meessen J, Vaenkatesan V, Sadeghian H. Sub-50 nm metrology on extreme ultra violet chemically amplified resist-A systematic assessment. Review of Scientific Instruments. 2015;86(10):103702. [Link] [DOI:10.1063/1.4932038]
13. Postek MT, Vladár A, Dagata J, Farkas N, Ming B, Wagner R, Raman A, Moon RJ, Sabo R, Wegner TH, Beecher J. Development of the metrology and imaging of cellulose nanocrystals. Measurement Science and Technology. 2010;22(2): 024005. [Link] [DOI:10.1088/0957-0233/22/2/024005]
14. Andoa T, Uchihashi T, Fukuma T. High-speed atomic force microscopy for nano-visualization of dynamic biomolecular processes. Progress in Surface Science. 2008;83(7-9):337-437. [Link] [DOI:10.1016/j.progsurf.2008.09.001]
15. Imamura M, Uchihashi T, Ando T, Leifert A, Simon U, Malay AD, et al. Probing structural dynamics of an artificial protein cage using high-speed atomic force microscopy. Nano Letters. 2015;15(2):1331-1335. [Link] [DOI:10.1021/nl5045617]
16. Schitter G, Menold P, Knapp HF, Allgower F, Stemmer A. High performance feedback for fast scanning atomic force microscopes. Review of Scientific Instruments. 2001;72:3320-3327. [Link] [DOI:10.1063/1.1387253]
17. Herfst R, Dekker B, Witvoet G, Crowcombe W, de Lange D, Sadeghian H. A miniaturized, high frequency mechanical scanner for high speed atomic force microscope using suspension on dynamically determined points. Review of Scientific Instruments. 2015;86:113703. [Link] [DOI:10.1063/1.4935584]
18. Keyvani A, Sadeghian H, Goosen H, Keulen FV. Transient Tip-Sample Interactions in High-Speed AFM Imaging of 3D nano structures. Proceedings of SPIE 9424: International Conference on Metrology, Inspection, and Process Control for Microlithography XXIX, 22-26 February 2015, San Jose, California, USA. Bellingham: SPIE; 2015. [Link] [DOI:10.1117/12.2185848]
19. Sadeghian H, van den Dool TC, Uzielc Y, Bar Orc R. High-speed AFM for 1x node metrology and inspection: Does it damage the features?. Proceedings of SPIE 9424: International Conference on Metrology, Inspection, and Process Control for Microlithography XXIX, 19 March 2015, San Jose, California, USA. Bellingham: SPIE; 2015. [Link] [DOI:10.1117/12.2085668]
20. Jalili N, Laxminarayana K. A review of atomic force microscopy imaging systems: Application to molecular metrology and biological sciences. Mechatronics. 2004;14(8):907-945. [Link] [DOI:10.1016/j.mechatronics.2004.04.005]
21. Yang CW, Hwang IS, Chen YF, Chang CS, Tsai DP. Imaging of soft matter with tapping-mode atomic force microscopy and non-contact-mode atomic force microscopy. Nanotechnology. 2007;18(8):084009. [Link] [DOI:10.1088/0957-4484/18/8/084009]
22. Guzman HV, Perrino AP, Garcia R. Peak forces in high-resolution imaging of soft matter in liquid. ACS Nano. 2013;7(4):3198-3204. [Link] [DOI:10.1021/nn4012835]
23. Guzman HV, Garcia R. Peak forces and lateral resolution in amplitude modulation force microscopy in liquid. Beilstein Journal of Nanotechnology. 2013;4:852-859. [Link] [DOI:10.3762/bjnano.4.96]
24. Hu S, Raman A. Analytical formulas and scaling laws for peak interaction forces in dynamic atomic force microscopy. Applied Physics Letters. 2007;91(12):123106. [Link] [DOI:10.1063/1.2783226]
25. Vahdat V, Carpick RW. Practical method to limit tip_sample contact stress and prevent wear in amplitude modulation atomic force microscopy. ACS Nano. 2013;7(11):9836-9850. [Link] [DOI:10.1021/nn403435z]
26. Rodrı́guez TR, Garcı́a R. Tip motion in amplitude modulation (tapping-mode) atomic-force microscopy: Comparison between continuous and point-mass models. Applied Physics Letters. 2002;80(9):1646-1648. [Link] [DOI:10.1063/1.1456543]
27. García R, San Paulo A. Attractive and repulsive tip-sample interaction regimes in tapping-mode atomic force microscopy. Physical Review B. 1999;60(7):4961. [Link] [DOI:10.1103/PhysRevB.60.4961]
28. Tatara Y. Large deformations of a rubber sphere under diametral compression: Part 1: Theoretical analysis of press approach, contact radius and lateral extension. JSME International Journal, Series A, Mechanics and Material Engineering. 1993;36(2):190-196. [Link] [DOI:10.1299/jsmea1993.36.2_190]
29. Tatara Y. Extensive theory of force-approach relations of elastic spheres in compression and impact. Journal of Engineering Materials and Technology. 1989;111(2):163-168. [Link] [DOI:10.1115/1.3226449]
30. Butt HJ, Kappl M. Surface and interfacial forces. Weinheim: Wiley; 2010. pp. 120-125. [Link] [DOI:10.1002/9783527629411]
31. Johnson KL. Contact Mechanics. Cambridge: Cambridge University Press; 1985. [Link]
32. Garcı́a R, Pérez R. Dynamic atomic force microscopy methods. Surface Science Reports. 2002;47(6-8):197-301. [Link] [DOI:10.1016/S0167-5729(02)00077-8]
33. Morita S, Giessibl FJ, Meyer E, Wiesendanger RE. Noncontact atomic force microscopy. 3rd Volume. Berlin: Springer; 2015. [Link] [DOI:10.1007/978-3-319-15588-3]
34. Keyvani A, Tamer MS, van Es MH, Sadeghian H. Simultaneous AFM nano-patterning and imaging for photomask repair. Proceedings of SPIE 9778: International Conference on Metrology, Inspection, and Process Control for Microlithography XXX, 8 March 2016, San Jose, California, USA. Bellingham: SPIE; 2016. [Link] [DOI:10.1117/12.2219041]
35. Tamer MS, Sadeghian H, Keyvani A, Goosen JFL, van Keulen F. Quantitative measurement of tip-sample interaction forces in tapping mode atomic force microscopy. 13th International Workshop on Nanomechanical Sensing, 22 - 24 June, 2016, Delft, Netherlands. Delft: NMC; 2016. pp.199-200. [Link]

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.