Volume 19, Issue 12 (December 2019)                   Modares Mechanical Engineering 2019, 19(12): 2877-2886 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Mohammadi M, Sefidgar M. Modeling of Drug Delivery to Solid Tumor with a Remodeled Dynamic Capillary Network Induced by Two Parent Vessels. Modares Mechanical Engineering 2019; 19 (12) :2877-2886
URL: http://mme.modares.ac.ir/article-15-26145-en.html
1- Energy Conversion Department, Mechanical Engineering Faculty, K. N. Toosi University of Technology, Tehran, Iran
2- Mechanical Engineering Department, Pardis Branch, Islamic Azad University, Pardis, Iran , msefidgar@pardisiau.ac.ir
Abstract:   (5614 Views)
Today, mathematical models and numerical methods are highly regarded according to their ability to predict and understand the cancer treatment process. In this research, the drug delivery to the solid tumor with considering its normal surrounding tissue has been studied by stimulating the blood flow in the dynamic capillary network and interstitial flow and adding the solute transport equation to the fluid flow equations. In the present study for the first time, drug delivery has been studied by a multi-scale comprehensive model with considering two parent vessels with different branches and different input and output pressures. In this paper, the intravascular flow was simultaneously simulated with the interstitial fluid flow. The distribution of drug concentration has been investigated at different times. The results show the dependence of the drug delivery to the interstitial fluid pressure, the pressure of the parent vessel and in fact, the blood pressure of each patient, and the capillary network structure. In addition, an increase of about 20% of the average drug concentration in the tumor site in the present study compared to the previous study with a parent vessel is evidence of the key role of the capillary network and its dependent parameters.
Full-Text [PDF 1613 kb]   (1776 Downloads)    
Article Type: Original Research | Subject: Biomechanics
Received: 2018/10/14 | Accepted: 2019/05/26 | Published: 2019/12/21

References
1. Jain RK, Tong RT, Munn LL. Effect of vascular normalization by antiangiogenic therapy on interstitial hypertension, peritumor edema, and lymphatic metastasis: insights from a mathematical model. Cancer Research. 2007;67(6):2729-35. [Link] [DOI:10.1158/0008-5472.CAN-06-4102]
2. Goel S, Duda DG, Xu L, Munn LL, Boucher Y, Fukumura D, Jain RK. Normalization of the vasculature for treatment of cancer and other diseases. Physiological Reviews. 2011;91(3):1071-121. [Link] [DOI:10.1152/physrev.00038.2010]
3. Soltani M, Chen P. Numerical modeling of fluid flow in solid tumors. PLoS ONE. 2011;6(6):e20344. [Link] [DOI:10.1371/journal.pone.0020344]
4. Tamburrino A, Piro G, Carbone C, Tortora G, Melisi D. Mechanisms of resistance to chemotherapeutic and anti-angiogenic drugs as novel targets for pancreatic cancer therapy. Frontiers in Pharmacology. 2013;4:56. [Link] [DOI:10.3389/fphar.2013.00056]
5. Dreher MR, Liu W, Michelich CR, Dewhirst MW, Yuan F, Chilkoti A. Tumor vascular permeability, accumulation, and penetration of macromolecular drug carriers. Journal of the National Cancer Institute. 2006;98(5):335-44. [Link] [DOI:10.1093/jnci/djj070]
6. Sefidgar M, Soltani M, Bazmara H, Mousavi M, Bazargan M, Elkamel A. Interstitial flow in cancerous tissue: effect of considering remodeled capillary network. Journal of Tissue Science & Engineering. 2014;4(3):1-8. [Link] [DOI:10.4172/2157-7552.S4-003]
7. Soltani M, Chen P. Numerical modeling of interstitial fluid flow coupled with blood flow through a remodeled solid tumor microvascular network. PLoS ONE. 2013;8(6):e67025. [Link] [DOI:10.1371/journal.pone.0067025]
8. Stylianopoulos T, Soteriou K, Fukumura D, Jain RK. Cationic nanoparticles have superior transvascular flux into solid tumors: insights from a mathematical model. Annals of Biomedical Engineering. 2013;41(1):68-77. [Link] [DOI:10.1007/s10439-012-0630-4]
9. Jain RK. Delivery of molecular and cellular medicine to solid tumors. Advanced Drug Delivery Reviews. 2001;46(1-3):149-68. [Link] [DOI:10.1016/S0169-409X(00)00131-9]
10. Pozrikidis C. Numerical simulation of blood and interstitial flow through a solid tumor. Journal of Mathematical Biology. 2010;60(1):75-94. [Link] [DOI:10.1007/s00285-009-0259-6]
11. Baxter LT, Jain RK. Transport of fluid and macromolecules in tumors: I. Role of interstitial pressure and convection. Microvascular Research. 1989;37(1):77-104. [Link] [DOI:10.1016/0026-2862(89)90074-5]
12. Baxter LT, Jain RK. Transport of fluid and macromolecules in tumors: III. Role of binding and metabolism. Microvascular Research. 1991;41(1):5-23. [Link] [DOI:10.1016/0026-2862(91)90003-T]
13. Baxter LT, Jain RK. Transport of fluid and macromolecules in tumors. IV. A microscopic model of the perivascular distribution. Microvascular Research. 1991;41(2):252-72. [Link] [DOI:10.1016/0026-2862(91)90026-8]
14. Baxter LT, Jain RK. Transport of fluid and macromolecules in tumors. II. Role of heterogeneous perfusion and lymphatics. Microvasc Research. 1990:40(2):246-63. [Link] [DOI:10.1016/0026-2862(90)90023-K]
15. Soltani M, Chen P. Effect of tumor shape and size on drug delivery to solid tumors. Journal of Biological Engineering. 2012;6(1):4. [Link] [DOI:10.1186/1754-1611-6-4]
16. Steuperaert M, Falvo D'Urso Labate G, Debbaut C, De Wever O, Vanhove C, Ceelen W, Segers P. Mathematical modeling of intraperitoneal drug delivery: simulation of drug distribution in a single tumor nodule. Drug Delivery. 2017;24(1):491-501. [Link] [DOI:10.1080/10717544.2016.1269848]
17. Bhandari A, Bansal A, Singh A, Sinha N. Perfusion kinetics in human brain tumor with DCE-MRI derived model and CFD analysis. Journal of Biomechanics. 2017;59:80-9. [Link] [DOI:10.1016/j.jbiomech.2017.05.017]
18. Bhandari A, Bansal A, Singh A. Numerical study of transport of anti-cancer drugs in heterogeneous vasculature of human brain tumors using DCE-MRI. Journal of Biomechanical Engineering. 2018;140(5). [Link] [DOI:10.1115/1.4038746]
19. Meghdadi N, Soltani M, Niroomand-Oscuii H, Yamani N. Personalized image-based tumor growth prediction in a convection-diffusion-reaction model. Acta Neurologica Belgica. 2018. [Link] [DOI:10.1007/s13760-018-0973-1]
20. Zhao J, Salmon H, Sarntinoranont M. Effect of heterogeneous vasculature on interstitial transport within a solid tumor. Microvascular Research. 2007;73(3):224-36. [Link] [DOI:10.1016/j.mvr.2006.12.003]
21. Arifin DY, Lee KYT, Wang CH. Chemotherapeutic drug transport to brain tumor. Journal of Controlled Release. 2009;137(3):203-10. [Link] [DOI:10.1016/j.jconrel.2009.04.013]
22. Pishko GL, Astary GW, Mareci TH, Sarntinoranont M. Sensitivity analysis of an image-based solid tumor computational model with heterogeneous vasculature and porosity. Annals of Biomedical Engineering. 2011;39(9):2360-73. [Link] [DOI:10.1007/s10439-011-0349-7]
23. Pishko GL, Astary GW, Zhang J, Mareci TH, Sarntinoranont M. Role of convection and diffusion on DCE-MRI parameters in low leakiness KHT sarcomas. Microvascular Research. 2012;84(3):306-13. [Link] [DOI:10.1016/j.mvr.2012.09.001]
24. Chauhan VP, Stylianopoulos T, Martin JD, Popović Z, Chen O, Kamoun WS, et al. Normalization of tumour blood vessels improves the delivery of nanomedicines in a size-dependent manner. Nature Nanotechnology. 2012;7(6):383-8. [Link] [DOI:10.1038/nnano.2012.45]
25. Secomb TW, Alberding JP, Hsu R, Dewhirst MW, Pries AR. Angiogenesis: an adaptive dynamic biological patterning problem. PLoS Computational Biology. 2013;9(3):e1002983. [Link] [DOI:10.1371/journal.pcbi.1002983]
26. Chaplain MAJ, McDougall SR, Anderson AR. Blood flow and tumour-induced angiogenesis: dynamically adapting vascular networks. In: Jackson TL, editor. Modeling tumor vasculature. New York: Springer; 2012. p. 167-212. [Link] [DOI:10.1007/978-1-4614-0052-3_8]
27. Sefidgar M, Raahemifar K, Bazmara H, Bazargan M, Mousavi SM, Soltani M. Effect of remodeled tumor-induced capillary network on interstitial flow in cancerous tissue. 2nd Middle East Conference on Biomedical Engineering; 2014 Feb 17-20; Doha, Qatar. IEEE; 2014. p. 212-5. [Link] [DOI:10.1109/MECBME.2014.6783242]
28. Sefidgar M, Soltani M, Raahemifar K, Sadeghi M, Bazmara H, Bazargan M, Mousavi Naeenian M. Numerical modeling of drug delivery in a dynamic solid tumor microvasculature. Microvascular Research. 2015;99:43-56. [Link] [DOI:10.1016/j.mvr.2015.02.007]
29. Soltani M, Sefidgar M, Bazmara H, Casey ME, Subramaniam RM, Wahl RL, Rahmim A. Spatiotemporal distribution modeling of PET tracer uptake in solid tumors. Annals of Nuclear Medicine. 2017;31(2):109-24. [Link] [DOI:10.1007/s12149-016-1141-4]
30. Asgari H, Ta'atizadeh E, Sefidgar M, Soltani M. Simulation of oxygen pressure and nanoparticle FMISO concentration in tissue by considering a real capillary network. Modares Mechanical Engineering. 2018;17(11):125-32. [Persian] [Link]
31. Asgari H, Soltani M, Sefidgar M. Modeling of FMISO F18- nanoparticle PET tracer in normal-cancerous tissue based on real clinical image. Microvascular Research. 2018;118:20-30. [Link] [DOI:10.1016/j.mvr.2018.02.002]
32. N Fasaeiyan N, Soltani M, Ta'atizadeh E, Sefidgar M. Image-based computational modeling of the FDG tracer in a solid tumor with a consideration capillaries network. Modares Mechanical Engineering. 2018;18(7):88-96. [Persian] [Link]
33. Sefidgar M, Bazmara H, Bazargan M, Mousavi Nayinian SM, Soltani M. A simultaneously solotuion of interstitial fluid flow in tumor tissue and blood flow in remodeled microvascular network induced by tumor. Modares Mechanical Engineering. 2014;14(9):1-9. [Persian] [Link]
34. Anderson ARA, Chaplain MAJ. Continuous and discrete mathematical models of tumor-induced angiogenesis. Bulletin of Mathematical Biology. 1998;60(5):857-99. [Link] [DOI:10.1006/bulm.1998.0042]
35. Anderson ARA, Chaplain MAJ, Mcdougall S. A hybrid discrete-continuum model of tumour induced angiogenesis. In: Jackson TL, editor. Modeling tumor vasculature. New York: Springer; 2012. p. 105-34. [Link] [DOI:10.1007/978-1-4614-0052-3_5]
36. Sefidgar M, Soltani M, Raahemifar K, Bazmara H, Nayinian SM, Bazargan M. Effect of tumor shape, size, and tissue transport properties on drug delivery to solid tumors. Journal of Biological Engineering. 2014;8:12. [Link] [DOI:10.1186/1754-1611-8-12]
37. Swabb EA, Wei J, Gullino PM. Diffusion and convection in normal and neoplastic tissues. Cancer Research. 1974;34(10):2814-22. [Link]
38. Patlak CS, Goldstein DA, Hoffman JF. The flow of solute and solvent across a two-membrane system. Journal of Theoretical Biology. 1963;5(3):426-42. [Link] [DOI:10.1016/0022-5193(63)90088-2]
39. Muthukkaruppan VR, Kubai L, Auerbach R. Tumor-induced neovascularization in the mouse eye. Journal of the National Cancer Institute. 1982;69(3):699-708. [Link]
40. Cai Y, Xu S, Wu J, Long Q. Coupled modeling of tumour angiogenesis, tumour growth and blood perfusion. Journal of Theoretical Biology. 2011;279(1):90-101. [Link] [DOI:10.1016/j.jtbi.2011.02.017]
41. Mouhayar E, Salahudeen A. Hypertension in cancer patients. Texas Heart Institute Journal. 2011;38(3):263-5. [Link]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.