Volume 20, Issue 2 (February 2020)                   Modares Mechanical Engineering 2020, 20(2): 515-529 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Ahmadlou A, Sadeghi M, Ghaffari Torab Torki R. Effect of Process Parameters on Burr Size and Surface Roughness in Micromilling of AISI1045 Steel. Modares Mechanical Engineering 2020; 20 (2) :515-529
URL: http://mme.modares.ac.ir/article-15-26541-en.html
1- Mechanical Engineering Department, Manufacturing Engineering Faculty, Tarbiat Modares University, Tehran, Iran
2- Mechanical Engineering Department, Manufacturing Engineering Faculty, Tarbiat Modares University, Tehran, Iran , sadeghim@modares.ac.ir
Abstract:   (3052 Views)
Micro milling is widely used for producing industrial micro parts. In micromachining, approaching the depth of cut to tool cutting tip radius causes some problems in achieving desired surface quality and burr formation. It is impossible to use conventional deburring methods in micro parts due to the reduction of machining scale and the importance of high dimensional accuracy and surface quality. Therefore, it is important to comprehend micro end milling and the effect of process parameters on reducing these problems. In this study, the effect of spindle speed, feed rate and depth of cut on surface roughness and burr size during micro end milling of AISI1045 steel have been investigated using the response surface method. Two flute endmills with 0.8 mm diameters have been used in this study. Results show that feed rate with 55.26, 37.53 and 44.55 percent contribution on burr size in up milling side, down milling side and surface roughness is the most effective parameter in the micro end milling process. Selecting the maximum amount of spindle speed, feed rate, and the minimum amount of depth of cut causes minimum burr size in both up milling and down milling side. 36000RPM spindle speed, 5.7mm/s feed rate and 0.086 mm depth of cut causes the best surface quality in micro-milling of mentioned steel.
 
Full-Text [PDF 2145 kb]   (1839 Downloads)    
Article Type: Original Research | Subject: Machining
Received: 2018/10/28 | Accepted: 2019/06/15 | Published: 2020/02/1

References
1. Leo Kumar SP, Jerald J, Kumanan S, Prabakaran R. A review on current research aspects in tool-based micromachining processes. Materials and Manufacturing Processes. 2014;29(11-12):1291-1337. [Link] [DOI:10.1080/10426914.2014.952037]
2. Jang KI, Kim DY, Maeng S, Lee W, Han J, Seok J, et al. Deburring microparts using a magnetorheological fluid. International Journal of Machine Tools and Manufacture. 2012;53(1):170-175. [Link] [DOI:10.1016/j.ijmachtools.2011.11.002]
3. Aurich JC, Dornfeld D, Arrazola PJ, Franke V, Leitz L, Min S. Burrs-Analysis, control and removal. CIRP Annals. 2009;58(2):519-542. [Link] [DOI:10.1016/j.cirp.2009.09.004]
4. Mathai GK, Melkote SN, Rosen D. Effect of machining parameters on burr size of micromilled foils. Proceedings of the 7th International Conference on MicroManufacturing, 2012 March 11-14, Illinois, USA. Illinois: Department of Mechanical Engineering, Northwestern University; 2012. [Link]
5. Biermann D, Steiner M. Analysis of micro burr formation in austenitic stainless steel X5CrNi18-10. Procedia CIRP. 2012;3:97-102. [Link] [DOI:10.1016/j.procir.2012.07.018]
6. Lee K, Dornfeld DA. An experimental study on burr formation in micro milling aluminium and copper [Report]. Dearborn: Society of Manufacturing Engineers; 2002. Contract NO.: MR02-202. [Link]
7. Kou Z, Wan Y, Cai Y, Liang X, Liu Z. Burr controlling in micro milling with supporting material method. Procedia Manufacturing. 2015;1:501-511. [Link] [DOI:10.1016/j.promfg.2015.09.015]
8. Jeong YH, HanYoo B, Lee HU, Min BK, Cho DW, Lee SJ. Deburring microfeatures using micro-EDM. Journal of Materials Processing Technology. 2009;209(14):5399-5406. [Link] [DOI:10.1016/j.jmatprotec.2009.04.021]
9. Lee K, Dornfeld DA. Micro-burr formation and minimization through process control. Precision Engineering. 2005;29(2):246-252. [Link] [DOI:10.1016/j.precisioneng.2004.09.002]
10. Chern GL, Wu YJ, Cheng JC, Yao JC. Study on burr formation in micro-machining using micro-tools fabricated by micro-EDM. Precision Engineering. 2007;31(2):122-129. [Link] [DOI:10.1016/j.precisioneng.2006.04.001]
11. Lee K, Stirn B, Dornfeld DA. Burr formation in micro-machining aluminum, 6061-T6. In: Inasaki I, editor. Initiatives of precision engineering at the beginning of a millennium. Boston: Springer; 2002. pp. 47-51. [Link] [DOI:10.1007/0-306-47000-4_8]
12. Weinert K, Petzoldt V. Machining NiTi micro-parts by micro-milling. Materials Science and Engineering: A. 2008;481-482:672-675. [Link] [DOI:10.1016/j.msea.2006.10.220]
13. Ali Mohammad Y, Omar MA, Othman KI, Hung WN. Prediction of burr formation in fabricating MEMS components by micro end milling. Advanced Materials Research. 2009;74:247-250. [Link] [DOI:10.4028/www.scientific.net/AMR.74.247]
14. Lekkala R, Bajpai V, Singh RK, Joshi SS. Characterization and modeling of burr formation in micro-end milling. Precision Engineering. 2011;35(4):625-637. [Link] [DOI:10.1016/j.precisioneng.2011.04.007]
15. Thepsonthi T, Özel T. Multi-objective process optimization for micro-end milling of Ti-6Al-4V titanium alloy. The International Journal of Advanced Manufacturing Technology. 2012;63(9-12):903-914. [Link] [DOI:10.1007/s00170-012-3980-z]
16. Bajpai V, Kushwaha AK, Singh RK. Burr formation and surface quality in high speed micromilling of titanium alloy (Ti6Al4V). Proceedings of the ASME 2013 International Manufacturing Science and Engineering Conference, (MSEC 2013), 10-14 June 2013, Madison, Wisconsin, USA,. New York: American Society of Mechanical Engineers; 2013. [Link] [DOI:10.1115/MSEC2013-1216]
17. Piquard R, D'Acunto A, Laheurte P, Dudzinski D. Micro-end milling of NiTi biomedical alloys, burr formation and phase transformation. Precision Engineering. 2014;38(2):356-364. [Link] [DOI:10.1016/j.precisioneng.2013.11.006]
18. Pratap T, Patra K. Experimental investigation on the effects of process variables in micro-end milling of Ti-6Al-4V titanium alloy. International Conference on Precision, Meso, Micro and Nano Engineering (COPEN9-2015), December 2015, Mumbai, India. Unknown Publisher; 2015. [Link] [DOI:10.1016/j.proeng.2015.12.021]
19. Wu X, Li L, He N. Investigation on the burr formation mechanism in micro cutting. Precision Engineering. 2017;47:191-196. [Link] [DOI:10.1016/j.precisioneng.2016.08.004]
20. Kumar P, Bajpai V, Singh R. Burr height prediction of Ti6Al4V in high speed micro-milling by mathematical modeling. Manufacturing Letters. 2017;11:12-16. [Link] [DOI:10.1016/j.mfglet.2016.10.001]
21. Yadav AK, Kumar M, Bajpai V, Singh NK, Singh RK. FE modeling of burr size in high-speed micro-milling of Ti6Al4V. Precision Engineering. 2017;49:287-292. [Link] [DOI:10.1016/j.precisioneng.2017.02.017]
22. Vipindas K, Kuriachen B, Mathew J. Investigations into the effect of process parameters on surface roughness and burr formation during micro end milling of TI-6AL-4V. The International Journal of Advanced Manufacturing Technology. 2019;100(5-8):1207-1222. [Link] [DOI:10.1007/s00170-016-9210-3]
23. Ziberov M, Da Silva MB, Jackson M, Hung WN. Effect of cutting fluid on micromilling of Ti-6Al-4V titanium alloy. Procedia Manufacturing. 2016;5:332-347. [Link] [DOI:10.1016/j.promfg.2016.08.029]
24. Kouravand Sh, Moutakef Imani B. 2D modeling of surface roughness in micromilling. MAJLESI. 2010;3(3):47-54. [Persian] [Link]
25. Rezaei H. Study of heat distribution and surface quality in micromilling of Titanium alloy Ti6Al4V [Dissertation]. Tehran: Tarbiat Modares University; 2017. [Persian] [Link]
26. Aramcharoen A, Mativenga PT. Size effect and tool geometry in micromilling of tool steel. Precision Engineering. 2009;33(4):402-407. [Link] [DOI:10.1016/j.precisioneng.2008.11.002]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.