Volume 19, Issue 11 (November 2019)                   Modares Mechanical Engineering 2019, 19(11): 2705-2716 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Saadatfar M. Thermoelastic Time-Dependent Creep Analysis of a Rotating Thick-Walled Cylinder Made of Magneto-Electro-Elastic Materials. Modares Mechanical Engineering 2019; 19 (11) :2705-2716
URL: http://mme.modares.ac.ir/article-15-26606-en.html
Mechanical Engineering Department, Engineering Faculty, University of Qom, Qom, Iran , m.saadatfar@qom.ac.ir
Abstract:   (4258 Views)
An analytical solution for the problem of time-dependent stress redistribution of a piezomagnetic rotating hollow cylinder subjected to an axisymmetric thermo-magneto-electro-mechanical loading is derived for the condition of plane strain. A differential equation containing creep strains is found using the constitutive equations, equilibrium equation and solving heat equation in plate strain. In the first step, eliminating creep strains in the differential equation, an analytical solution for the differential equation is obtained. Then, by adding creep strains and assuming constant thermal conditions, the creep stress rates and electric and magnetic potential are obtained using solving a differential equation. Lastly, the history of stresses, radial displacement, magnetic potential, and electric potential during the time can be obtained using an iterative method. In the numerical examples, the effects of time passing on the structure behavior and the effective parameters such as thermal boundary condition, angular velocity, and electromagnetic boundary condition were investigated comprehensively.
Full-Text [PDF 2015 kb]   (1753 Downloads)    
Article Type: Original Research | Subject: Smart Materials
Received: 2018/10/29 | Accepted: 2019/05/21 | Published: 2019/11/21

References
1. 1- Saadatfar M, Aghaie Khafri M. Hygrothermomagnetoelectroelastic analysis of a functionally graded magnetoelectroelastic hollow sphere resting on an elastic foundation. Smart Materials and Structures. 2014;23(3):035004. [Link] [DOI:10.1088/0964-1726/23/3/035004]
2. Dai HL, Jiang HJ, Yang L. Time-dependent behaviors of a FGPM hollow sphere under the coupling of multi-fields. Solid State Sciences. 2012;14(5):587-597. [Link] [DOI:10.1016/j.solidstatesciences.2012.02.011]
3. Hou PF, Leung AYT. The transient responses of magneto-electro-elastic hollow cylinders. Smart Materials and Structures. 2004;13(4):762. [Link] [DOI:10.1088/0964-1726/13/4/014]
4. Wang HM, Ding HJ. Transient responses of a special non-homogeneous magneto-electro-elastic hollow cylinder for a fully coupled axisymmetric plane strain problem. Acta Mechanica. 2006;184(1-4):137-157. [Link] [DOI:10.1007/s00707-006-0338-3]
5. Babaei MH, Chen ZT. Exact solutions for radially polarized and magnetized magnetoelectroelastic rotating cylinders. Smart Materials and Structures. 2008;17(2):025035. [Link] [DOI:10.1088/0964-1726/17/2/025035]
6. Ootao Y, Ishihara M. Exact solution of transient thermal stress problem of a multilayered magneto-electro-thermoelastic hollow cylinder. Journal of Solid Mechanics and Materials Engineering. 2011;5(2):90-103. [Link] [DOI:10.1299/jmmp.5.90]
7. Akbarzadeh AH, Chen ZT. Magnetoelectroelastic behavior of rotating cylinders resting on an elastic foundation under hygrothermal loading. Smart Materials and Structures. 2012;21(12):125013. [Link] [DOI:10.1088/0964-1726/21/12/125013]
8. Loghman A, Ghorbanpour Arani A, Amir S, Vajedi A. Magnetothermoelastic creep analysis of functionally graded cylinders. International Journal of Pressure Vessels and Piping. 2010;87(7):389-395. [Link] [DOI:10.1016/j.ijpvp.2010.05.001]
9. Singh T, Gupta VK. Effect of anisotropy on steady state creep in functionally graded cylinder. Composite Structures. 2011;93(2):747-758. [Link] [DOI:10.1016/j.compstruct.2010.08.005]
10. Sharma S, Sahay I, Kumar R. Creep transition in non homogeneous thick-walled circular cylinder under internal and external pressure. Applied Mathematical Sciences. 2012;6(122):6075-6080. [Link]
11. Loghman A, Atabakhshian V. Semi-analytical solution for time-dependent creep analysis of rotating cylinders made of anisotropic Exponentially Graded Material (EGM). Journal of Solid Mechanics. 2012;4(3):313-326. [Link]
12. Jamian S, Sato H, Tsukamoto H, Watanabe Y. Creep analysis of functionally graded material thick-walled cylinder. Applied Mechanics and Materials. 2013;315:867-871. [Link] [DOI:10.4028/www.scientific.net/AMM.315.867]
13. Zamani Nejad M, Davoudi Kashkoli M. Time-dependent thermo-creep analysis of rotating FGM thick-walled cylindrical pressure vessels under heat flux. International Journal of Engineering Science. 2014;82:222-237. [Link] [DOI:10.1016/j.ijengsci.2014.06.006]
14. Singh T, Gupta VK. Analysis of steady state creep in whisker reinforced functionally graded thick cylinder subjected to internal pressure by considering residual stress. Mechanics of Advanced Materials and Structures. 2014;21(5):384-392. [Link] [DOI:10.1080/15376494.2012.697600]
15. Zamani Nejad M, Hoseini Z, Niknejad A, Ghannad M. Steady-state creep deformations and stresses in FGM rotating thick cylindrical pressure vessels. Journal of Mechanics. 2015;31(1):1-6. [Link] [DOI:10.1017/jmech.2014.70]
16. Davoudi Kashkoli M, Naderan Tahan Kh, Zamani Nejad M. Time-dependent thermomechanical creep behavior of FGM thick hollow cylindrical shells under non-uniform internal pressure. International Journal of Applied Mechanics. 2017;9(6):1750086. [Link] [DOI:10.1142/S1758825117500867]
17. Sharma S, Yadav S, Sharma R. Thermal creep analysis of functionally graded thick-walled cylinder subjected to torsion and internal and external pressure. Journal of Solid Mechanics. 2017;9(2):302-318. [Link]
18. Bakhshizadeh A, Zamani Nejad M, Davoudi Kashkoli M. Time-dependent hygro-thermal creep analysis of pressurized FGM rotating thick cylindrical shells subjected to uniform magnetic field. Journal of Solid Mechanics. 2017;9(3):663-679. [Link]
19. Ghorbanpour Arani A, Kolahchi R. Successive approximation method for time-dependent creep modeling of functionally graded piezoelectric cylinder. Turkish Journal of Engineering & Environmental Sciences. 2014;38:309-322. [Link] [DOI:10.3906/muh-1211-5]
20. Ghorbanpour Arani A, Kolahchi R, Mosallaie Barzoki AA, Loghman A. Time-dependent thermo-electro-mechanical creep behavior of radially polarized FGPM rotating cylinder. Journal of Solid Mechanics. 2011;3(2):142-157. [Link]
21. Ghorbanpour Arani A, Mosallaie Barzoki AA, Kolahchi R, Mozdianfard MR, Loghman A. Semi-analytical solution of time-dependent electro-thermo-mechanical creep for radially polarized piezoelectric cylinder. Computers & Structures. 2011;89(15-16):1494-1502. [Link] [DOI:10.1016/j.compstruc.2011.05.001]
22. Saadatfar M, Aghaie Khafri M. On the behavior of a rotating functionally graded hybrid cylindrical shell with imperfect bonding subjected to hygrothermal condition. Journal of Thermal Stresses. 2015;38(8):854-881. [Link] [DOI:10.1080/01495739.2015.1038487]
23. Saadatfar M, Aghaie Khafri M. On the magneto-thermo-elastic behavior of a functionally graded cylindrical shell with pyroelectric layers featuring interlaminar bonding imperfections rested in an elastic foundation. Journal of Solid Mechanics. 2015;7(3):344-363. [Link]
24. Saadatfar M, Aghaie Khafri M. Electromagnetothermoelastic behavior of a rotating imperfect hybrid functionally graded hollow cylinder. Smart Structures and Systems. 2015;15(6):1411-1437. [Link] [DOI:10.12989/sss.2015.15.6.1411]
25. Saadatfar M. Effect of multiphysics conditions on the behavior of an exponentially graded smart cylindrical shell with imperfect bonding. Meccanica. 2015;50(8):2135-2152. [Link] [DOI:10.1007/s11012-015-0150-z]
26. Loghman A, Abdollahian M, Jafarzadeh Jazi A, Ghorbanpour Arani A. Semi-analytical solution for electromagnetothermoelastic creep response of functionally graded piezoelectric rotating disk. International Journal of Thermal Sciences. 2013;65:254-266. [Link] [DOI:10.1016/j.ijthermalsci.2012.10.011]
27. Saadatfar M. Effect of interlaminar weak bonding and constant magnetic field on the hygrothermal stresses of a FG hybrid cylindrical shell using DQM. Journal of Stress Analysis. 2018;3(1):93-110. [Link]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.