Volume 20, Issue 1 (January 2020)                   Modares Mechanical Engineering 2020, 20(1): 57-65 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Ghafurian M, Niazmand H, Moallemi A, Tavakoli Dastjerd F. Experimental Investigation of Nanofluid Based on Titanium Dioxide Nanoparticles in Absorption Sunlight and Steam Generation. Modares Mechanical Engineering 2020; 20 (1) :57-65
URL: http://mme.modares.ac.ir/article-15-27047-en.html
1- Mechanical Engineering Department, Engineering Faculty, Ferdowsi University of Mashhad, Mashhad, Iran
2- Mechanical Engineering Department, Engineering Faculty, Ferdowsi University of Mashhad, Mashhad, Iran , niazmand@um.ac.ir
Abstract:   (4275 Views)

In the present research, the steam generation performances of nanofluids containing titanium dioxide have experimentally been examined. For this purpose, a solar simulator with a xenon lamp as the radiation source, and a pyranometer as a light intensity measuring device are used. Then, the water based-nanofluids in five nanoparticle mass fractions of 0.001, 0.002, 0.004, 0.04, and 0.08% exposed to the light intensity of 3.5Suns (3.5 kW/m2) were investigated to compare their evaporation performances with water (H2O). Finally, the effects of the solar power intensity on the steam generation were examined. The results showed that the titanium dioxide nanostructures are more efficient to directly absorb the solar energy than the water so that the maximum total evaporation efficiency of 77.4% and 54% were obtained at 3.5 kW.m-2 for nanofluid and water, respectively. Furthermore, it was found that light absorption increases as the nanofluid mass fraction increases. Also, increasing the light intensity from 1.5 to 3.5 kW.m-2 enhances the thermal efficiency, while it reduces the evaporation efficiency.

Full-Text [PDF 1570 kb]   (1894 Downloads)    
Article Type: Letter to Editor | Subject: Renewable Energy
Received: 2018/11/10 | Accepted: 2019/05/7 | Published: 2020/01/20

References
1. Ghafurian MM, Niazmand H, Ebrahimnia Bajestan E, Elhami Nik H. Localized solar heating via graphene oxide nanofluid for direct steam generation. Journal of Thermal Analysis and Calorimetry. 2019;135(2):1443-1449. [Link] [DOI:10.1007/s10973-018-7496-0]
2. Ghafurian MM, Niazmand H. New approach for estimating the cooling capacity of the absorption and compression chillers in a trigeneration system. International Journal of Refrigeration. 2018;86:89-106. [Link] [DOI:10.1016/j.ijrefrig.2017.11.026]
3. Ni G, Miljkovic N, Ghasemi H, Huang X, Boriskina SV, Lin CT, et al. Volumetric solar heating of nanofluids for direct vapor generation. Nano Energy. 2015;17:290-301. [Link] [DOI:10.1016/j.nanoen.2015.08.021]
4. Li H, He Y, Liu Z, Huang Y, Jiang B. Synchronous steam generation and heat collection in a broadband Ag@ TiO2 core-shell nanoparticle-based receiver. Applied Thermal Engineering. 2017;121:617-627. [Link] [DOI:10.1016/j.applthermaleng.2017.04.102]
5. Neumann O, Urban AS, Day J, Lal S, Nordlander P, Halas NJ. Solar vapor generation enabled by nanoparticles. ACS Nano. 2012;7(1):42-49. [Link] [DOI:10.1021/nn304948h]
6. Neumann O, Feronti C, Neumann AD, Dong A, Schell K, Lu B, et al. Compact solar autoclave based on steam generation using broadband light-harvesting nanoparticles. Proceedings of the National Academy of Sciences. 2013;110(29):11677-11681. [Link] [DOI:10.1073/pnas.1310131110]
7. Jin H, Lin G, Bai L, Amjad M, Bandarra Filho EP, Wen D. Photothermal conversion efficiency of nanofluids: An experimental and numerical study. Solar Energy. 2016;139:278-289. [Link] [DOI:10.1016/j.solener.2016.09.021]
8. Morciano M, Fasano M, Salomov U, Ventola L, Chiavazzo E, Asinari P. Efficient steam generation by inexpensive narrow gap evaporation device for solar applications. Scientific Reports. 2017;7(1):11970. [Link] [DOI:10.1038/s41598-017-12152-6]
9. Zeiny A, Jin H, Lin G, Song P, Wen D. Solar evaporation via nanofluids: A comparative study. Renewable Energy. 2018;122:443-454. [Link] [DOI:10.1016/j.renene.2018.01.043]
10. Liu X, Huang J, Wang X, Cheng G, He Y. Investigation of graphene nanofluid for high efficient solar steam generation. Energy Procedia. 2017;142:350-355. [Link] [DOI:10.1016/j.egypro.2017.12.055]
11. Ghafurian MM, Niazmand H, Ebrahimnia Bejestan E. Performance evaluation of multi-wall carbon nanotube in solar fresh water production. Amirkabir Journal of Mechanical Engineering. 2018. Articles in Press. [Persian] [Link]
12. Jin H, Lin G, Bai L, Zeiny A, Wen D. Steam generation in a nanoparticle-based solar receiver. Nano Energy. 2016;28:397-406. [Link] [DOI:10.1016/j.nanoen.2016.08.011]
13. Wang X, He Y, Cheng G, Shi L, Liu X, Zhu J. Direct vapor generation through localized solar heating via carbon-nanotube nanofluid. Energy Conversion and Management. 2016;130:176-183. [Link] [DOI:10.1016/j.enconman.2016.10.049]
14. Fu Y, Mei T, Wang G, Guo A, Dai G, Wang Sh, et al. Investigation on enhancing effects of Au nanoparticles on solar steam generation in graphene oxide nanofluids. Applied Thermal Engineering. 2017;114:961-968. [Link] [DOI:10.1016/j.applthermaleng.2016.12.054]
15. Shi L, He Y, Huang Y, Jiang B. Recyclable Fe3O4@CNT nanoparticles for high-efficiency solar vapor generation. Energy Conversion and Management. 2017;149:401-408. [Link] [DOI:10.1016/j.enconman.2017.07.044]
16. Zhou L, Tan Y, Wang J, Xu W, Yuan Y, Cai W, et al. 3D self-assembly of aluminium nanoparticles for plasmon-enhanced solar desalination. Nature Photonics. 2016;10(6):393-398. [Link] [DOI:10.1038/nphoton.2016.75]
17. Lou J, Liu Y, Wang Z, Zhao D, Song Ch, Wu J, et al. Bioinspired multifunctional paper-based rGO composites for solar-driven clean water generation. ACS Applied Materials & Interfaces. 2016;8(23):14628-14636. [Link] [DOI:10.1021/acsami.6b04606]
18. Liu Y, Lou J, Ni M, Song Ch, Wu J, Dasgupta NP, et al. Bioinspired bifunctional membrane for efficient clean water generation. ACS Applied Materials & Interfaces. 2016;8(1):772-779. [Link] [DOI:10.1021/acsami.5b09996]
19. Ghafurian MM, Akbari Z, Niazmand H, Mehrkhah R, Wongwises S, Mahian O. Effect of sonication time on the evaporation rate of seawater containing a nanocomposite. Ultrasonics Sonochemistry. 20019. In Press. [Link]
20. Ghafurian MM, Niazmand H, , Akbari Z, Bakhsh Zahmatkesh B. Performance evaluation of Ferric oxide (Fe3O4) and Graphene nanoplatelet (GNP) nanoparticles in solar steam generation. Journal of Solid and Fluid Mechanics. 2019;9(2):181-196. [Persian] [Link]
21. Zeng Y, Wang K, Yao J, Wang H. Hollow carbon beads for significant water evaporation enhancement. Chemical Engineering Science. 2014;116(1):704-709. [Link] [DOI:10.1016/j.ces.2014.05.057]
22. Amjad M, Raza G, Xin Y, Pervaiz Sh, Xu J, Du X, et al. Volumetric solar heating and steam generation via gold nanofluids. Applied Energy. 2017;206:393-400. [Link] [DOI:10.1016/j.apenergy.2017.08.144]
23. Swinehart DF. The beer-lambert law. Journal of Chemical Education. 1962;39(7):333-345. [Link] [DOI:10.1021/ed039p333]
24. Ghafurian MM, Niazmand H, Ebrahiminia Bajestan E. Improving steam generation and distilled water production by volumetric solar heating. Applied Thermal Engineering. 2019;158:113808. [Link] [DOI:10.1016/j.applthermaleng.2019.113808]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.