Volume 20, Issue 2 (February 2020)                   Modares Mechanical Engineering 2020, 20(2): 371-380 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Yazdanpanah-Ardakani K, Niroomand-Oskui H. Designing Centrifugal Impeller of a Left Ventricular Assist Pump using Point-by-Point Method. Modares Mechanical Engineering 2020; 20 (2) :371-380
URL: http://mme.modares.ac.ir/article-15-27136-en.html
1- Biomechanics Department, Biomedical Engineering Faculty, Sahand University of Technology, Tabriz, Iran
2- Biomechanics Department, Biomedical Engineering Faculty, Sahand University of Technology, Tabriz, Iran , niroomand@sut.ac.ir
Abstract:   (2222 Views)
Increasing growth of cardiovascular disease treatment caused the occurrence of heart failure for more patients after surviving. This leads to an increase in the need for types of equipment in these patients for struggling heart failure. Ventricular assist pumps have been known as one of the main types of equipment, today. In the present study, a ventricular assist pump has been designed in which its impeller has been designed using the industrial method (point-by-point method). In this study, 7 impellers with different inlet angles (including 10, 15, 20, 30, 35, 40 and 45 degrees) and outlet angle of 25 degrees were designed and analyzed using computational fluid dynamics. The results indicate that all designed impellers in this study can fulfill the physiological requirements according to pressure difference (total head) and flow rate. Meanwhile considering hemolysis as an effective factor in the performance of ventricular assist pumps, the impeller with an inlet angle of 10 degrees is chosen due to the lowest hemolysis index, equal to 0.0045, and complying total head and flow rate, which are equal to 108 and 5, respectively.
Full-Text [PDF 1344 kb]   (1545 Downloads)    
Article Type: Original Research | Subject: Biomechanics
Received: 2018/11/17 | Accepted: 2019/05/29 | Published: 2020/02/1

References
1. Dembitsky WP, Adamson RM. Opportunities and challenges for LVAD therapy now and in the future. In: Kyo S, editor. Ventricular assist devices in advanced-stage heart failure. Tokyo: Springer; 2014. pp. 1-22. [Link] [DOI:10.1007/978-4-431-54466-1_1]
2. Cleland JG, Gemmell I, Khand A, Boddy A. Is the prognosis of heart failure improving?. European Journal of Heart Failure. 1999;1(3):229-241. [Link] [DOI:10.1016/S1388-9842(99)00032-X]
3. Starling RC, Naka Y, Boyle AJ, Gonzalez-Stawinski G, John R, Jorde U, et al. Results of the Post-U.S. food and drug administration-approval study with a continuous flow left ventricular assist device as a bridge to heart transplantation: A prospective study using the INTERMACS (Interagency Registry for Mechanically Assisted Circulatory Support). Journal of the American College of Cardiology. 2011;57(19):1890-1898. [Link] [DOI:10.1016/j.jacc.2010.10.062]
4. Rose EA, Gelijns AC, Moskowitz AJ, Heitjan DF, Stevenson LW, Dembitsky W, et al. Long-term use of a left ventricular assist device for end-stage heart failure. New England Journal of Medicine. 2001;345(20):1435-1443. [Link] [DOI:10.1056/NEJMoa012175]
5. Wohlschlaeger J, Schmitz KJ, Schmid C, Schmid KW, Keul P, Takeda A, et al. Reverse remodeling following insertion of left ventricular assist devices (LVAD): A review of the morphological and molecular changes. Cardiovascular Research. 2005;68(3):376-386. [Link] [DOI:10.1016/j.cardiores.2005.06.030]
6. Slaughter MS, Rogers JG, Milano CA, Russell SD, Conte JV, Feldman D, et al. Advanced heart failure treated with continuous-flow left ventricular assist device. The New England Journal of Medicine. 2009;361(23):2241-2251. [Link] [DOI:10.1056/NEJMoa0909938]
7. Dembitsky WP, Tector AJ, Park S, Moskowitz AJ, Gelijns AC, Ronan NS, et al. Left ventricular assist device performance with long-term circulatory support: Lessons from the REMATCH trial. The Annals of Thoracic Surgery. 2004;78(6):2123-2129. [Link] [DOI:10.1016/j.athoracsur.2004.02.030]
8. Hata H, Fujita T, Shimahara Y, Sato S, Yanase M, Seguchi O, et al. Early and mid-term outcomes of left ventricular assist device implantation and future prospects. General Thoracic and Cardiovascular Surgery. 2015;63(10):557-564. [Link] [DOI:10.1007/s11748-015-0538-7]
9. Thompson LO, Loebe M, Noon GP. What price support? Ventricular assist device induced systemic response. ASAIO Journal. 2003;49(5):518-526. [Link] [DOI:10.1097/01.MAT.0000085672.42122.49]
10. Genovese EA, Dew MA, Teuteberg JJ, Simon MA, Kay J, Siegenthaler MP, et al. Incidence and patterns of adverse event onset during the first 60 days after ventricular assist device implantation. The Annals of Thoracic Surgery. 2009;88(4):1162-1170. [Link] [DOI:10.1016/j.athoracsur.2009.06.028]
11. Gregory S, Stevens M, Fraser JF, editors. Mechanical circulatory and respiratory support. Cambridge: Academic Press; 2017. pp. xxv-xxx. [Link]
12. Pak SW, Uriel N, Takayama H, Cappleman S, Song R, Colombo PC, et al. Prevalence of de novo aortic insufficiency during long-term support with left ventricular assist devices. The Journal of Heart and Lung Transplantation. 2010;29(10):1172-1176. [Link] [DOI:10.1016/j.healun.2010.05.018]
13. Crow S, John R, Boyle A, Shumway S, Liao K, Colvin-Adams M, et al. Gastrointestinal bleeding rates in recipients of nonpulsatile and pulsatile left ventricular assist devices. The Journal of Thoracic and Cardiovascular Surgery. 2009;137(1):208-215. [Link] [DOI:10.1016/j.jtcvs.2008.07.032]
14. Cowger J, Pagani Francis D, Haft JW, Romano MA, Aaronson KD, Kolias TJ. The development of aortic insufficiency in left ventricular assist device-supported patients. Circulation: Heart Failure. 2010;3(6):668-674. [Link] [DOI:10.1161/CIRCHEARTFAILURE.109.917765]
15. Potapov EV, Weng Y, Drews T, Jurmann M, Hetzer R. Longest time of support by the novacor left ventricular assist device without pump exchange. The Annals of Thoracic Surgery. 2005;80(6):2421. [Link] [DOI:10.1016/j.athoracsur.2005.05.056]
16. Faggian G, Santini F, Franchi G, Portner PM, Mazzucco A. Insights from continued use of a novacor left ventricular assist system for a period of 6 years. The Journal of Heart and Lung Transplantation. 2005;24(9):1444. [Link] [DOI:10.1016/j.healun.2004.12.115]
17. Holman WL, Naftel DC, Eckert CE, Kormos RL, Goldstein DJ, Kirklin JK. Durability of left ventricular assist devices: Interagency registry for mechanically assisted circulatory support (INTERMACS) 2006 to 2011. The Journal of Thoracic and Cardiovascular Surgery. 2013;146(2):437-41.e1. [Link] [DOI:10.1016/j.jtcvs.2013.02.018]
18. Capoccia M. Mechanical circulatory support for advanced heart failure: Are we about to witness a new "Gold Standard"?. Journal of Cardiovascular Development and Disease. 2016;3(4):35. [Link] [DOI:10.3390/jcdd3040035]
19. Malinauskas RA, Hariharan P, Day SW, Herbertson LH, Buesen M, Steinseifer U, et al. FDA benchmark medical device flow models for CFD validation. ASAIO Journal. 2017;63(2):150-160. [Link] [DOI:10.1097/MAT.0000000000000499]
20. Ozturk C, Aka IB, Lazoglu I. Effect of blade curvature on the hemolytic and hydraulic characteristics of a centrifugal blood pump. The International Journal of Artificial Organs. 2018;41(11):730-737. [Link] [DOI:10.1177/0391398818785558]
21. Khoo DP, Cookson AN, Gill HS, Fraser KH. Normal fluid stresses are prevalent in rotary ventricular assist devices: A computational fluid dynamics analysis. The International Journal of Artificial Organs. 2018;41(11):738-751. [Link] [DOI:10.1177/0391398818792757]
22. Jabbarifar M, Riasi A. Numerical study on hemolysis induced by speed-changing heart pump. Modares Mechanical Engineering. 2018;18(2):273-280. [Persian] [Link]
23. Han X, Kang Y, Li D, Zhao W. Impeller optimized design of the centrifugal pump: A numerical and experimental investigation. Energies. 2018;11(6). [Link] [DOI:10.3390/en11061444]
24. ISO. ISO 14708-5:2010, Implants for surgery - active implantable medical devices - part 5: Circulatory support device Arlington [Internet]. Geneva: ISO; 2010 [cited 2018 Sep 18]. Available From: https://www.iso.org/standard/52779.html. [Link]
25. Anagnostopoulos JS. CFD analysis and design effects in a radial pump impeller. WSEAS Transactions on Fluid Mechanics. 2006;1:763-770. [Link]
26. Zhou X, Zhang Y, Ji Z, Hou H. The optimal hydraulic design of centrifugal impeller using genetic Algorithm with BVF. International Journal of Rotating Machinery. 2014;2014:Article ID 845302. [Link] [DOI:10.1155/2014/845302]
27. Bowade A, Parashar C. A review of different blade design methods for radial flow centrifugal pump. International Journal of Scientific Engineering and Research. 2015;3(7):24-27. [Link]
28. Menter FR, Kuntz M, Langtry R. Ten years of industrial experience with the SST turbulence model. Turbulence, Heat and Mass Transfer 4. 2003. [Link]
29. Bardina JE, Huang PG, Coakley TJ. Turbulence modeling validation, testing, and development [Report]. California: National Aeronautics and Space Administration; 1997. [Link] [DOI:10.2514/6.1997-2121]
30. Heuser G, Opitz R. A Couette viscometer for short time shearing of blood. Biorheology. 1980;17(1-2):17-24. [Link] [DOI:10.3233/BIR-1980-171-205]
31. Nammakie E, Niroomand-Oscuii H, Koochaki M, Ghalichi F. Computational fluid dynamics-based study of possibility of generating pulsatile blood flow via a continuous-flow VAD. Medical & Biological Engineering & Computing. 2017;55(1):167-178. [Link] [DOI:10.1007/s11517-016-1523-8]
32. Wood HG, Throckmorton AL, Untaroiu A, Song X. The medical physics of ventricular assist devices. Reports on Progress in Physics. 2005;68(3):545-576. [Link] [DOI:10.1088/0034-4885/68/3/R02]
33. Song X, Throckmorton AL, Wood HG, Antaki JF, Olsen DB. Quantitative evaluation of blood damage in a centrifugal VAD by computational fluid dynamics. Journal of Fluids Engineering. 2004;126(3):410-418. [Link] [DOI:10.1115/1.1758259]
34. Song X, Throckmorton AL, Wood HG, Antaki JF, Olsen DB. Computational fluid dynamics prediction of blood damage in a centrifugal pump. Artificial Organs. 2003;27(10):938-941. [Link] [DOI:10.1046/j.1525-1594.2003.00026.x]
35. Noor MR, Ho CH, Parker KH, Simon AR, Banner NR, Bowles CT. Investigation of the characteristics of heartware HVAD and thoratec heartmate II under steady and pulsatile flow conditions. Artificial Organs. 2016;40(6):549-560. [] [DOI:10.1111/aor.12593]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.