Volume 20, Issue 2 (February 2020)                   Modares Mechanical Engineering 2020, 20(2): 475-484 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Moafi S, Najafi F. Fuzzy Force Field Control Design for Lower Limb Rehabilitation Robot. Modares Mechanical Engineering 2020; 20 (2) :475-484
URL: http://mme.modares.ac.ir/article-15-27293-en.html
1- Dynamics, Control & Vibration Department, Mechanical Engineering Faculty, Guilan University, Rasht, Iran
2- Dynamics, Control & Vibration Department, Mechanical Engineering Faculty, Guilan University, Rasht, Iran , fnajafi@guilan.ac.ir
Abstract:   (2347 Views)

In this paper, an intelligent powerful control scheme is presented for a lower-limb rehabilitation robot. The focus of this study is on maintaining patient safety, focusing on the concept of assist as needed to improve the efficacy of robotic rehabilitation exercises and intelligent controller behavior. The proposed control scheme is consists of force field control and fuzzy logic control. Gravity compensation, friction forces, and interaction torque have been considered to the dynamic model of the system. The force field control method creates a virtual wall along the desired trajectory in the sagittal plane that can guide the patient's gait. Force field control parameters are selected using the fuzzy logic control rules o improve the concept of assist as needed for the rehabilitation robot in order to make a freedom of action for the patient. Therefore, the fuzzy logic control algorithm was proposed to improve the behavioral quality of the rehabilitation robot depending on the patient's ability in the gait process. In this regard, the proposed control scheme has been implemented for the lower-limb rehabilitation robot system. Simulation results show the efficiency of the proposed controller to improve the quality of motorized gait training. 

Full-Text [PDF 1284 kb]   (1478 Downloads)    
Article Type: Original Research | Subject: Robotic
Received: 2018/11/18 | Accepted: 2019/05/23 | Published: 2020/02/1

References
1. Colombo G, Joerg M, Schreier R, Dietz V. Treadmill training of paraplegic patients using a robotic orthosis. Journal of Rehabilitation Research and Development. 2000;37(6):693-700. [Link]
2. Kazerooni H, Steger R, Huang L. Hybrid control of the berkeley lower extremity exoskeleton (BLEEX). The International Journal of Robotics Research. 2006;25(5-6):561-573. [Link] [DOI:10.1177/0278364906065505]
3. Banala SK, Kim SH, Agrawal SK, Scholz JP. Robot assisted gait training with active leg exoskeleton (ALEX). IEEE Transactions on Neural Systems and Rehabilitation Engineering. 2009;17(1):2-8. [Link] [DOI:10.1109/TNSRE.2008.2008280]
4. Fisher S, Lucas L, Thrasher TA. Robot-assisted gait training for patients with hemiparesis due to stroke. Topics in Stroke Rehabilitation. 2011;18(3):269-276. [Link] [DOI:10.1310/tsr1803-269]
5. Freivogel S, Mehrholz J, Husak-Sotomayor T, Schmalohr D. Gait training with the newly developed 'LokoHelp'-system is feasible for non-ambulatory patients after stroke, spinal cord and brain injury, a feasibility study. Brain Injury. 2008;22(7-8):652-653. [Link] [DOI:10.1080/02699050801941771]
6. Schmidt H, Werner C, Bernhardt R, Hesse S, Krüger J. Gait rehabilitation machines based on programmable footplates. Journal of Neuro Engineering and Rehabilitation. 2007;4. [Link] [DOI:10.1186/1743-0003-4-2]
7. Veneman JF, Kruidhof R, Hekman EEG, Ekkelenkamp R, Van Asseldonk EHF, Van Der Kooij H. Design and evaluation of the LOPES exoskeleton robot for interactive gait rehabilitation. IEEE Transactions on Neural Systems and Rehabilitation Engineering. 2007;15(3):379-386. [Link] [DOI:10.1109/TNSRE.2007.903919]
8. Hesse S, Schmidt H, Werner C, Bardeleben A. Upper and lower extremity robotic devices for rehabilitation and for studying motor control. Current Opinion in Neurology. 2003;16(6):705-710. [Link] [DOI:10.1097/00019052-200312000-00010]
9. Sawicki GS, Ferris DP. A pneumatically powered knee-ankle-foot orthosis (KAFO) with myoelectric activation and inhibition. Journal of Neuro Engineering and Rehabilitation. 2009;6. [Link] [DOI:10.1186/1743-0003-6-23]
10. Kazemi J, Ozgoli S. Parametric model of human constrained gait with implementation on exoped exoskeleton. Modares Mechanical Engineering. 2018;18(6):12-18. [Persian] [Link]
11. Mohammadi Moghadam M, Dashkhaneh A, Hadian MR, Mogharrabi M, Mirzaei Saba AA, Davodi SM. Rehabilitation robots control in gait training exercises on treadmill. Modares Mechanical Engineering. 2014;14(8):157-64. [Persian] [Link]
12. Taherifar A, Vossoughi Gh, Selk Ghafari A. Identification and torque control of series elastic actuator of lower limb extremity exoskeleton. Modares Mechanical Engineering. 2017;17(8):1-8. [Persian] [Link]
13. Hussain S, Xie SQ, Jamwal PK. Robust nonlinear control of an intrinsically compliant robotic gait training orthosis. IEEE Transactions on Systems, Man, and Cybernetics: Systems. 2012;43(3):655-665. [Link] [DOI:10.1109/TSMCA.2012.2207111]
14. Israel JF, Campbell DD, Kahn JH, Hornby TG. Metabolic costs and muscle activity patterns during robotic- and therapist-assisted treadmill walking in individuals with incomplete spinal cord injury. Physical Therapy. 2006;86(11):1466-1478. [Link] [DOI:10.2522/ptj.20050266]
15. Duschau-Wicke A, von Zitzewitz J, Caprez A, Lunenburger L, Riener R. Path control: A method for patient-cooperative robot-aided gait rehabilitation. IEEE Transactions on Neural Systems and Rehabilitation Engineering. 2010;18(1):38-48. [Link] [DOI:10.1109/TNSRE.2009.2033061]
16. Ju MS, Lin CCK, Lin DH, Hwang IS, Chen SM. A rehabilitation robot with force- position hybrid fuzzy controller: Hybrid fuzzy control of rehabilitation robot. IEEE Transactions on Neural Systems and Rehabilitation Engineering. 2005;13(3):349-58. [Link] [DOI:10.1109/TNSRE.2005.847354]
17. Yousefi F, Alipour Kh, Tarvirdizadeh B, Hadi A. Control of knee rehabilitation robot based on combination of backstepping and admittance algorithms. Modares Mechanical Engineering. 2016;16(12):135-143. [Persian] [Link]
18. Jamwal PK, Hussain S, Ghayesh MH, Rogozina SV. Impedance control of an intrinsically compliant parallel ankle rehabilitation robot. IEEE Transactions on Industrial Electronics. 2016;63(6):3638-3647. [Link] [DOI:10.1109/TIE.2016.2521600]
19. Li X, Pan Y, Chen G, Yu H. Adaptive human-robot interaction control for robots driven by series elastic actuators. IEEE Transactions on Robotics. 2017;33(1):169-182. [Link] [DOI:10.1109/TRO.2016.2626479]
20. Zhang T, Xia J. Interconnection and damping assignment passivity-based impedance control of a compliant assistive robot for physical human-robot interactions. IEEE Robotics and Automation Letters. 2019;4(2):538-545. [Link] [DOI:10.1109/LRA.2019.2891434]
21. Teramae T, Noda T, Morimoto J. EMG-based model predictive control for physical human-robot interaction: Application for assist-as-needed control. IEEE Robotics and Automation Letters. 2018;3(1):210-217. [Link] [DOI:10.1109/LRA.2017.2737478]
22. Hussain S, Xie SQ, Jamwal PK. Adaptive impedance control of a robotic orthosis for gait rehabilitation. IEEE Transactions on Cybernetics. 2013;43(3):1025-1034. [Link] [DOI:10.1109/TSMCB.2012.2222374]
23. Riener R, Lünenburger L, Jezernik S, Anderschitz M, Colombo G, Dietz V. Patient-cooperative strategies for robot-aided treadmill training: First experimental results. IEEE Transactions on Neural Systems and Rehabilitation Engineering. 2005;13(3):380-394. [Link] [DOI:10.1109/TNSRE.2005.848628]
24. Duschau-Wicke A, von Zitzewitz J, Caprez A, Lünenburger L, Riener R. Path control: A method for patient-cooperative robot-aided gait rehabilitation. IEEE Transactions on Neural Systems and Rehabilitation Engineering. 2010;18(1):38-48. [Link] [DOI:10.1109/TNSRE.2009.2033061]
25. Aoyagi D, Ichinose WE, Harkema SJ, Reinkensmeyer DJ, Bobrow JE. A robot and control algorithm that can synchronously assist in naturalistic motion during body-weight-supported gait training following neurologic injury. IEEE Transactions on Neural Systems and Rehabilitation Engineering. 2007;15(3):387-400. [Link] [DOI:10.1109/TNSRE.2007.903922]
26. Vallery H, van Asseldonk EH, Buss M, van der Kooij H. Reference trajectory generation for rehabilitation robots: Complementary limb motion estimation. IEEE Transactions on Neural Systems and Rehabilitation Engineering. 2009;17(1):23-30. [Link] [DOI:10.1109/TNSRE.2008.2008278]
27. Ekkelenkamp R, Veltink P, Stramigioli S, van der Kooij H. Evaluation of a virtual model control for the selective support of gait functions using an exoskeleton. Proceedings of the 2007 IEEE 10th International Conference on Rehabilitation Robotics, June 12-15, Noordwijk, The Netherlands. Piscataway: IEEE; 2007. [Link] [DOI:10.1109/ICORR.2007.4428501]
28. Miripour Fard B, Padargani T. Controllable workspace generation for cable-driven rehabilitation robot using neural network and based on patient's anthropometric parameters. Modares Mechanical Engineering. 2015;15(3):137-145. [Persian] [Link]
29. Banala SK, Agrawal SK, Kim SH, Scholz JP. Novel gait adaptation and neuromotor training results using an active leg exoskeleton. IEEE/ASME Transactions on Mechatronics. 2010;15(2):216-225. [Link] [DOI:10.1109/TMECH.2010.2041245]
30. Beyl P, Van Damme M, Van Ham R, Vanderborght B, Lefeber D. Design and control of a lower limb exoskeleton for robot-assisted gait training. Applied Bionics and Biomechanics. 2009;6(2):229-243. [Link] [DOI:10.1155/2009/580734]
31. Lotti N, Sanguineti V. Toward EMG-controlled force field generation for training and rehabilitation: From movement data to muscle geometry. International Conference on Rehabilitation Robotics (ICORR), 17-20 July 2017, London, UK. Piscataway: IEEE; 2017. [Link] [DOI:10.1109/ICORR.2017.8009227]
32. Algrary S, Ohnishi K, Saito Y. Development of a target tracking upper-limb therapeutic robot with circulating force field. 11th International Symposium on Mechatronics and its Applications (ISMA), 4-6 March 2018, Sharjah, United Arab Emirates. Piscataway: IEEE; 2018. [Link] [DOI:10.1109/ISMA.2018.8330119]
33. Zatsiorsky VM, Seluyanov VN. The mass and inertia characteristics of the main segments of the human body. Biomechanics. 1983;1152-1159. [Link]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.