Volume 19, Issue 12 (December 2019)                   Modares Mechanical Engineering 2019, 19(12): 3071-3082 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Yazdanpanah Jahromi M, Atashkari K, Kalteh M. Simulation and Comparison of the Effect of Oxidizing Gas and Different Devolatilization Models in an Entrained-Flow Coal Gasifier. Modares Mechanical Engineering 2019; 19 (12) :3071-3082
URL: http://mme.modares.ac.ir/article-15-27321-en.html
1- Mechanical Engineering Faculty, University of Guilan, Rasht, Iran
2- University of Mechanical Engineering Faculty, University of Guilan, Rasht, Iran , atashkar@guilan.ac.ir
Abstract:   (4608 Views)
Gasification technology is an important part of clean coal technology. Further development of this technology requires understanding the processes and interactions of gas and solid fuel particles injected into the gasifier. In this study, a numerical simulation of an entrained flow coal gasifier has been investigated using experimental operating conditions. The reactions and kinetic parameters of the gasification process have been extracted using coal gasification data obtained from similar published papers. Comparison of the simulation results with experimental data and two other similar studies confirm the accuracy of the developed model. The focus of this study is on the accuracy of the models presented for the devolatilization process and the effect of the oxidizer change from oxygen to air on the gasifier performance. Four devolatilization models including chemical percolation devolatilization, single rate, Kobayashi and constant rate models have been investigated. The predicted trends of species changes are similar in different devolatilization models but the amount of produced syngas is somewhat different depending on the accuracy of each model. The Kobayashi and constant rate models predict the devolatilization rate lower than the other two models. The results obtained from the chemical percolation devolatilization model are more consistent with the experimental data compared to the other models but require higher computational times. The use of air oxidizing agents reduces the concentration of produced syngas rather than oxygen and hence reduces the gasifier efficiency.
Full-Text [PDF 1029 kb]   (1682 Downloads)    
Article Type: Original Research | Subject: Computational Fluid Dynamic (CFD)
Received: 2018/11/19 | Accepted: 2019/05/26 | Published: 2019/12/21

References
1. Garg A, Kazunari K, Pulles T, Watkinson AP, Chen HP, Kim JR. IPCC guidelines for national greenhouse gas inventories. Unknown city: Unknown Publishing; 2006. [Link]
2. N. E. T. L. (NETL). Gasification database: active and planned commercial gasification plants [Internet]. Paris, France: iea; 2007 [Cited 13 Sep 2018]. Available from: www.iea.org. [Link]
3. Chen C, Horio M, Kojima T. Numerical simulation of entrained flow coal gasifiers. Part I: modeling of coal gasification in an entrained flow gasifier. Chemical Engineering Science. 2000;55(18):3861-3874. [Link] [DOI:10.1016/S0009-2509(00)00030-0]
4. Zitney SE, Guenther C. Gasification CFD modeling for advanced power plant simulations. National Energy Technology Laboratory, Morgantown, WV 26507-0880, USA. 2005:1-12. [Link]
5. Silaen A, Wang T. Effects of fuel injection angles on performance of a two-stage coal gasifier. In: Proceeding of 23rd Annual International Pittsburgh Coal Conference; Energy, Environment and Sustainable Development; 2006; Pittsburgh, PA. Pittsburgh, USA: Annual International Pittsburgh Coal Conference -CD-ROM Edition; 2009. p. P99. [Link]
6. Silaen A, Wang T. Effect of turbulence and devolatilization models on coal gasification simulation in an entrained-flow gasifier. International Journal of Heat and Mass Transfer. 2010;53(9-10):2074-2091. [Link] [DOI:10.1016/j.ijheatmasstransfer.2009.12.047]
7. Steibel M, Halama S, Geißler A, Spliethoff H. Gasification kinetics of a bituminous coal at elevated pressures: Entrained flow experiments and numerical simulations. Fuel. 2017;196:210-216. [Link] [DOI:10.1016/j.fuel.2017.01.098]
8. Wu Y, Zhang J, Smith PJ, Zhang H, Reid C, Lv J, Yue G. Three-dimensional simulation for an entrained flow coal slurry gasifier. Energy & Fuels. 2010;24(2):1156-1163. [Link] [DOI:10.1021/ef901085b]
9. Wiinikka H, Toth P, Jansson K, Molinder R, Broström M, Sandström L, et al. Particle formation during pressurized entrained flow gasification of wood powder: Effects of process conditions on chemical composition, nanostructure, and reactivity. Combustion and Flame. 2018;189:240-256. [Link] [DOI:10.1016/j.combustflame.2017.10.025]
10. Bahari A, Atashkari K, Mahmoudimehr J. Numerical simulation and optimum operational point determination of a downdraft gasfier regarding pollutant emissions. Modares Mechanical Engineering. 2018;18(6):69-78. [Persian] [Link]
11. Cao Z, Li T, Zhang Q, Zhou H, Song C, You F. Systems modeling, simulation and analysis for robust operations and improved design of entrained-flow pulverized coal gasifiers. Energy. 2018;148:941-964. [Link] [DOI:10.1016/j.energy.2018.01.134]
12. Wang L, Jia Y, Kumar S, Li R, Mahar RB, Ali M, et al. Numerical analysis on the influential factors of coal gasification performance in two-stage entrained flow gasifier. Applied Thermal Engineering. 2017;112:1601-1611. [Link] [DOI:10.1016/j.applthermaleng.2016.10.122]
13. Hedman PO, Smoot LD, Smith PJ, Blackham AU. Entrained-flow gasification at elevated pressure. Volume 1. Pittsburgh: National Energy Technology Laboratory; 1987. [Link]
14. Brown BW, Smoot LD, Smith PJ, Hedman PO. Measurement and prediction of entrained-flow gasification processes. AIChE Journal. 1988;34(3):435-446. [Link] [DOI:10.1002/aic.690340311]
15. Brown BW, Smoot LD, Hedman PO. Effect of coal type on entrained gasification. Fuel. 1986;65(5):673-678. [Link] [DOI:10.1016/0016-2361(86)90363-7]
16. Vascellari M, Schulze S, Nikrityuk P, Safronov D, Hasse C. Numerical simulation of pulverized coal MILD combustion using a new heterogeneous combustion submodel, flow. Turbulence and Combustion. 2014;92(1-2):319-345. [Link] [DOI:10.1007/s10494-013-9467-7]
17. Xu J, Zhao H, Dai Z, Liu H, Wang F. Numerical simulation of Opposed Multi-Burner gasifier under different coal loading ratio. Fuel. 2016;174:97-106. [Link] [DOI:10.1016/j.fuel.2016.01.079]
18. Lu X, Wang T. Water-gas shift modeling in coal gasification in an entrained-flow gasifier - Part 2: Gasification application. Fuel. 2013;108:620-628. [Link] [DOI:10.1016/j.fuel.2013.02.024]
19. Crowe CT, Sharma MP, Stock DE. The particle-source-in cell (PSI-CELL) model for gas-droplet flows. Journal of Fluids Engineering. 1977;99(2):325-332. [Link] [DOI:10.1115/1.3448756]
20. Jones JM, Lea-Langton AR, Ma L, Pourkashanian M, Williams A. Pollutants generated by the combustion of solid biomass fuels. New York: Springer; 2014. [Link] [DOI:10.1007/978-1-4471-6437-1]
21. Khan J, Wang T. Implementation of a demoisturization and devolatilization model in multi-phase simulation of a hybrid entrained-flow and fluidized bed mild gasifier. International Journal of Clean Coal and Energy. 2013;2(3):35-53. [Link] [DOI:10.4236/ijcce.2013.23005]
22. Pillai KK. Influence of coal type on devolatilization and combustion in fluidized beds. Journal of the Energy Institute. 1981;54:142-150. [Link]
23. Jupudi RS, Zamansky V, Fletcher TH. Prediction of light gas composition in coal devolatilization. Energy & Fuels. 2009;23(6):3063-3067. [Link] [DOI:10.1021/ef9001346]
24. Lu X, Wang T. Simulation of Ash deposition behavior in an entrained flow coal gasifier. International Journal of Clean Coal and Energy. 2015;4(2):43-59. [Link] [DOI:10.4236/ijcce.2015.42005]
25. Fletcher TH, Kerstein AR, Pugmire RJ, Grant DM. Chemical percolation model for devolatilization. 2. Temperature and heating rate effects on product yields. Energy & Fuels. 1990;4(1):54-60. [Link] [DOI:10.1021/ef00019a010]
26. Kobayashi H, Howard JB, Sarofim AF. Coal devolatilization at high temperatures. Symposium (International) on Combustion. 1977;16(1):411-425. [Link] [DOI:10.1016/S0082-0784(77)80341-X]
27. Cui H, Turn SQ, Keffer V, Evans D, Tran T, Foley M. Study on the fate of metal elements from biomass in a bench-scale fluidized bed gasifier. Fuel. 2013;108:1-12. [Link] [DOI:10.1016/j.fuel.2011.07.029]
28. Yang H, Yan R, Chen H, Zheng C, Lee DH, Liang DT. Influence of mineral matter on pyrolysis of palm oil wastes. Combustion and Flame. 2006;146(4):605-611. [Link] [DOI:10.1016/j.combustflame.2006.07.006]
29. Watanabe H, Otaka M. Numerical simulation of coal gasification in entrained flow coal gasifier. Fuel. 2006;85(12-13):1935-1943. [Link] [DOI:10.1016/j.fuel.2006.02.002]
30. Callaghan CA. Kinetics and catalysis of the water-gas-shift reaction: a microkinetic and graph theoretic approach [Dissertation]. Worcester, Massachusetts: Worcester Polytechnic Institute; 2006. [Link]
31. Wu Y, Smith PJ, Zhang J, Thornock JN, Yue G. Effects of turbulent mixing and controlling mechanisms in an entrained flow coal gasifier. Energy & Fuels. 2010;24(2):1170-1175. [Link] [DOI:10.1021/ef9011214]
32. Park SS, Jeong HJ, Hwang J. 3-D CFD modeling for parametric study in a 300-MWe one-stage oxygen-blown entrained-bed coal gasifier. Energies. 2015;8(5):4216-4236. [Link] [DOI:10.3390/en8054216]
33. Zhang C. Numerical modeling of coal gasification in an entrained-flow gasifier. In: Proceedings of the ASME 2012 International Mechanical Engineering Congress & Exposition; 2012 Nov 9-15; Houston, Texas, USA. ASME; 2013. p. 1193-1203. [Link]
34. Schultheiss KS. Computational fluid dynamics (cfd) modeling of a laboratory scale coal gasifier [Dissertation]. Statesboro, Georgia: Georgia Southern University; 2013. [Link]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.