Volume 19, Issue 12 (December 2019)                   Modares Mechanical Engineering 2019, 19(12): 3039-3049 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Ghannadi M, Saghravani S, Niazmand H. Experimental Analysis of Micro- Nano Bubble Formation inside Venturi Tube with High Speed Photography and Image Processing. Modares Mechanical Engineering 2019; 19 (12) :3039-3049
URL: http://mme.modares.ac.ir/article-15-27736-en.html
1- Civil Engineering Department, Shahrood University, Shahrood, Iran
2- Civil Engineering Department, Shahrood University, Shahrood, Iran , saghravani@shahroodut.ac.ir
3- Mechanical Engineering Department, Ferdowsi University, Mashhad, Iran
Abstract:   (5439 Views)

In this research, micro-nano bubbles formation inside the venturi tube has been investigated using image processing technique and high-speed photography. For the purpose, two models of venturi tubes with different dimensions were made of light and transparent plexiglass and then they were tested with various water flow discharges. After the injection of air into the venturi tube, a high-speed camera has been used to capture images of two-phase flows passing through the venturi tube. The captured images were processed by MATLAB software. After investigating the results and obtaining the average diameter of the bubbles, the number of Micro-Nano bubbles and the velocity in the center of venturi tube have been calculated and the related graphs have been analyzed. The results show that reducing bottleneck length and increasing flow discharge inside the venturi tube lead to the formation of smaller bubbles and the number of Micro-Nano bubble increases.


Full-Text [PDF 1732 kb]   (2344 Downloads)    
Article Type: Original Research | Subject: Heat & Mass Transfer
Received: 2018/12/2 | Accepted: 2019/05/26 | Published: 2019/12/21

References
1. Prevenslik T. Stability of nanobubbles by quantum mechanics. In: Proceeding of topical problems of fluid mechnics; 2014 Feb 19-21; Institute of Thermomechanics, Czech Academy of Sciences, Prague. p. 113-116. [Link]
2. Zimmerman WB, Al-Mashhadani MKH, Bandulasena HCH. Evaporation dynamics of microbubbles. Chemical Engineering Science. 2013;101:865-877. [Link] [DOI:10.1016/j.ces.2013.05.026]
3. Wataneabe K. Washing effect of Microbubbles. In: Proceedings of FLUCOME 2013. 12th International Conference on Fluid Control, Measurements, and Visualization; 2013 Nov 18-23; Nara, Japan. p. OS1-01-1. [Link]
4. Madavan NK, Deutsch S, Merkle CL. Reduction of turbulent skin friction by Microbubbles. The Physics of Fluids. 1984;27(2):356. [Link] [DOI:10.1063/1.864620]
5. Kanagawa T. Focused ultrasound propagation in water containing many therapeutical Micro-bubbles. In: Proceedings of FLUCOME 2013. 12th International Conference on Fluid Control, Measurements, and Visualization; 2013 Nov 18-23; Nara, Japan. p. OS6-04-4. [Link]
6. Zimmerman WB, Tesař V. Bubble generation for aeration and other purposes. British Patent GB20060021561, Filed Oct 2006 [cited 2018 Sep 23]. Available from: https://patents.google.com/patent/US20100002534 [Link]
7. Zimmerman WB, Tesar V, Butler S, Bandulasena HCH. Microbubble generation. Recent Patents in Engineering. 2008;2(1):1-8. [Link] [DOI:10.2174/187221208783478598]
8. Li H, Hu L, Xia Z. Impact of groundwater salinity on bioremediation enhanced by micro-nano bubbles. Materials. 2013;6(9):3676-3687. [Link] [DOI:10.3390/ma6093676]
9. Atkins PW, De Paula J. Atkins physical chemistry. 8th Edition. New York: Oxford University Press; 2006. [Link]
10. Ushikubo FU, Forukawa T, Nakagawa R, Enari M, Makino Y, Kawagoe Y, et al.Evidence of the existence and the stability of nano-bubbles in water. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2010;361(1-3):31-37. [Link] [DOI:10.1016/j.colsurfa.2010.03.005]
11. Li P, Tsuge H. Water treatment by induced air flotation using microbubbles. Journal of Chemical Engineering of Japan. 2006;39(8):896-903. [Link] [DOI:10.1252/jcej.39.896]
12. Clift R, Grace JR, Weber ME. Bubbles, drops and particles. Mineola: Dover publications Inc; 2005. [Link]
13. Agarwal A, Jern Ng W, Liu Y. Principle and applications of microbubble and nanobubble technology for water treatment. Chemosphere. 2011;84(9):1175-1180. [Link] [DOI:10.1016/j.chemosphere.2011.05.054]
14. Takahashi M. Zeta potential of microbubbles in aqueous solutions: electrical properties of the gas-water interface. Journal of Physical Chemistry B. 2005;190(46):21858-21864. [Link] [DOI:10.1021/jp0445270]
15. Tsuge H, editor. Micro- and Nano bubbles: fundamentals and applications. Boca Raton: CRC press; 2014. [Link] [DOI:10.1201/b17278]
16. Takahashi M. Base and technological application of micro-bubble and nanobubble. Materials Integration. 2009;22(5):2-19. [Link]
17. Takahashi M, Chiba K, Li P. Free-radical generation from collapsing microbubbles in the absence of a dynamic stimulus. Journal of Physical Chemistry B. 2007;111(6):1343-1347. [Link] [DOI:10.1021/jp0669254]
18. Martin CS. Entrapped air in pipelines. In: Proceeding of the 2nd International Conference on Pressure Purges; 1976 Sep 22-24; Cranfiled, Bedford, England. [Link]
19. Hewitt GFH, Taylor NSH. Annular two-phase flow. Oxford: Pergamon Press; 1970. [Link]
20. Beggs HD, Brill JP. A study of two-phase flow in inclined pipes. Journal of Petroleum Technology. 1973;25(5):607-617. [Link] [DOI:10.2118/4007-PA]
21. Levy S. Two-phase flow in complex systems. New York: John Wiley & Sons, Inc; 1999. [Link]
22. Terasaka K, Tsuge H. Bubble formation at a single orifice in highly viscous liquids. Journal of Chemical Engineering of Japan. 1990;23(2):160-165 [Link] [DOI:10.1252/jcej.23.160]
23. Miyahara T, Tanaka A. Size of bubbles generated from porous plates. Journal of Chemical Engineering of Japan. 1997;30(2):353-355. [Link] [DOI:10.1252/jcej.30.353]
24. Yazawa T, Nakamichi H, Tanaka H, Eguchi K. Permeation of liquid through porous glass membrane with surface modification. Journal of the Ceramic Society of Japan.1988;96(1109):18-23. [Link] [DOI:10.2109/jcersj.96.18]
25. Forrester SE, Rielly CD, Carpenter KJ. Gas-inducing impeller design and performance characteristics. Chemical Engineering Science. 1998;53(4):603-615. [Link] [DOI:10.1016/S0009-2509(97)00352-7]
26. Johnson BD, Gershey RM, Cooke RC, Sutcliffe WH. A theoritical model for bubble formation at a frit surface in a shear field. Separation Science and Technology. 1982;17(8):1027-1039. [Link] [DOI:10.1080/01496398208060267]
27. Vlyssides AG, Mai ST, Barampouti EMP. Bubbles size distribution formed by depressurizing air-saturated water. Industrial & Engineering Chemistry Research. 2004;43:2775-2780. [Link] [DOI:10.1021/ie0307176]
28. Han M, Park Y, Lee J, Shim J. Effect of pressure on bubble size in dissolved air flotation. Water Supply. 2002;2(5-6):41-46. [Link] [DOI:10.2166/ws.2002.0148]
29. Fujiwara A, Takagi S, Watanabe K, Matsumoto Y. Experimental study on the new micro-bubble generator and its application to water purification system. In: Proceeding of the 4th Joint Fluids Summer Engineering Conference; 2003 July 6-10; Honolulu, Hawaii, USA. ASME/SME; 2003. p. 469-473. [Link]
30. Makuta T, Takemura F, Hihara E, Matsumoto Y, Shoji M. Generation of micro gas bubbles of uniform diameter in an ultrasonic field. Journal of Fluid Mechanics. 2006;548:113-131. [Link] [DOI:10.1017/S0022112005007470]
31. Wiraputra IGPAE, Edikresnha D, Munir MM, Khairurrijal. Generation of submicron bubbles using venturi tube method. Journal of Physics: Conference Series. 2016;739:012058. [Link] [DOI:10.1088/1742-6596/739/1/012058]
32. Tutsumi K. Water treatment technology and facility in future. Kagaku Soti. 2004;1:71-80. [Japanese] [Link]
33. Zhou Y, Shun Z, Gu H, Miao Z. Injection performance and influencing factors in self-priming Venturi scrubber. CIESC Journal. 2015;66(1):99-103. [Link]
34. Wang XJ, Tang L, Jiang Z. Numerical simulation of venturi ejector reactor in yellow phosphorus purification system. Nuclear Engineering and Design. 2014;268;18-23. [Link] [DOI:10.1016/j.nucengdes.2013.11.083]
35. Zhu Y, Chao MA, Zhang XW. Study on flow in Venturi-mixer EGR for a turbo charged diesel engine. Transactions of CSICE. 2002;(6):546-550. [Link]
36. Quiroz-P'erez E, V'azquez-Rom'an R, Lesso-Arroyo R, Barrag'an-Hern'andez VM. An approach to evaluate Venturi-device effects on gas wells production Journal of Petroleum Science and Engineering. 2014;116:8-18. [Link] [DOI:10.1016/j.petrol.2014.03.002]
37. Gonzalez RC, Woods RE. Digital image processing. 3rd Edition. New York: Pearson Prentice Hall; 2008. [Link]
38. Rodio MG, Congedo PM. Robust analysis of cavitating flows in the Venturi tube. European Journal of Mechanics - B/Fluids. 2014;44(2):88-99. [Link] [DOI:10.1016/j.euromechflu.2013.11.002]
39. Gupta B, Nayak AK, Kandar TK, Nair S. Investigation of air-water two phase flow through a venture. Experimental Thermal and Fluid Science. 2016;70:148-154. [Link] [DOI:10.1016/j.expthermflusci.2015.07.012]
40. Pulley RA. Modelling the performance of venturi scrubbers. Chemical Engineering Journal. 1997;67(1):9-18. [Link] [DOI:10.1016/S1385-8947(97)00014-4]
41. Viswanathan S. Development of a pressure drop model for a variable throat venturi scrubber. Chemical Engineering Journal. 1998;71(2):153-160. [Link] [DOI:10.1016/S1385-8947(98)00123-5]
42. Ahmadvand F, Talaie MR. CFD modeling of droplet dispersion in a Venturi scrubber. Chemical Engineering Journal. 2010;160(2):423-431. [Link] [DOI:10.1016/j.cej.2010.03.030]
43. Sun Y, Niu W. Simulating the effects of structural parameters on the hydraulic performances of Venturi Tube. Modelling and Simulation in Engineering. 2012;2012:458368. [Link] [DOI:10.1155/2012/458368]
44. Konstantinov S, Tselischev D, Tselischev V. Numerical cavitation model for simulation of mass flow stabilization effect in ANSYS CFX. Modern Applied Science. 2015;9(4):21-31. [Link] [DOI:10.5539/mas.v9n4p21]
45. Jiang Y, Yang M, Guo C, Shen S. Numerical simulation of asymmetric flow in Venturi tube. CIESC Journal. 2014;6(S1):223-228. [Link]
46. Shen SW, Yang M, Jiang YH, Wang ZY. The numerical simulation of the influence of Venturi burner's structure on rich/lean separation. Journal of Engineering Thermophysics. 2015;36(2):347-350. [Link]
47. Manzano J, Palau CV, de Azevedo BM, do Bomfim GV, Vasconcelos DV. Geometry and head loss in Venturi injectors through computational fluid dynamics. Engenharia Agrícola. 2016;36(3):482-491. [Link] [DOI:10.1590/1809-4430-Eng.Agric.v36n3p482-491/2016]
48. Zhang JX. Analysis on the effect of venturi tube structural parameters on fluid flow. AIP Advances. 2017;7(6):065315. [Link] [DOI:10.1063/1.4991441]
49. Bui Dinh T, Choi TS. Application of image processing techniques in air/water two phase flow. Mechanics Research Communications. 1999;26(4):463-468. [Link] [DOI:10.1016/S0093-6413(99)00050-6]
50. Kabiri Samani A. Fluctuating characteristics of two-phase air-water slug flow in pressurized pipelines. Journal of Water and Wastewater. 2009;20(2):62-68. [Persian] [Link]
51. do Amaral CEF, Alves RF, da Silva MJ, Arruda LVR, Dorini L, Morales REM, Pipa DR. Image processing techniques for high-speed videometry in horizental two-phase slug flow. Flow Measurment and Instrumentation 2013;33:257-264. [Link] [DOI:10.1016/j.flowmeasinst.2013.07.006]
52. Asadi H, Hormozi F. Develop a high speed photography technique and image processing to determine the bubble characteristics in the bubble column. NSMSI Journal. 2014;32(4):71-80. [Persian] [Link]
53. Zhao L, Mo Z, Sun L, Xie G, Liu H, Du M, Tang J. A visualized study of the motion of individual bubbles in a venturi- type bubble generator. Progress in Nuclear Energy. 2017;97:74-89. [Link] [DOI:10.1016/j.pnucene.2017.01.004]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.