Volume 20, Issue 1 (January 2020)                   Modares Mechanical Engineering 2020, 20(1): 203-213 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Talei M, Jafarmadar S, Khalilarya S. Experimental and Numerical Investigation of Colded Exhaust Gas Recirculation Effect on Performance and Emission of Lean Burn Spark Ignition Engine with Natural Gas and Pre-Chamber. Modares Mechanical Engineering 2020; 20 (1) :203-213
URL: http://mme.modares.ac.ir/article-15-28011-en.html
1- Energy Conservation Department, Mechanical Engineering Faculty, Urmia University, Urmia, Iran
2- Energy Conservation Department, Mechanical Engineering Faculty, Urmia University, Urmia, Iran , s.jafarmadar@urmia.ac.ir
Abstract:   (2797 Views)
In the present research, the performance of a single-cylinder engine with a pre-chamber and natural gas fuel designed in Urmia University has been investigated and the effect of Exhaust Gas Recirculation (EGR) on engine performance has been analyzed. The results indicate that the simultaneous use of the pre-chamber and the EGR reduces significantly nitrogen oxides emission. Also, the amount of unburned hydrocarbons (HC) decreases in the low EGR, but the amount of HC increases significantly with higher EGR. EGR increases the carbon monoxide (CO) emission but does not have a significant effect on carbon dioxide (CO2) emission. Simultaneous use of EGR and pre-chamber can reduce the amount of emission while it can maintain the engine braking. The engine power and the indicated mean effective pressures (IMEP) which are the main indicators of the engine's performance, decrease by 3 to 4 percent for every 5 percent of the EGR. The results show that the EGR reduces the velocity of the jet flames out of the pre-chamber which ultimately reduces the advance of the flame front. Analysis of the results of the experimental test and the simulated model shows that an ideal range for EGR in an engine with a pre-chamber can be defined in which the emission is minimal and the engine power is maintained. In the engine used in this research, the exhaust gas reaction is in the ideal 10% range.
Full-Text [PDF 1244 kb]   (2192 Downloads)    
Article Type: Original Research | Subject: Internal Combustion Engine
Received: 2018/12/10 | Accepted: 2019/05/4 | Published: 2020/01/20

References
1. Burgdorf K, Denbratt I. Comparison of cylinder pressure based knock detection methods. International Fuels & Lubricants Meeting & Exposition. Warrendale: SAE International; 1997. [Link] [DOI:10.4271/972932]
2. Li J, Gong CM, Su Y, Dou HL, Liu XJ. Effect of injection and ignition timings on performance and emissions from a spark-ignition engine fueled with methanol. Fuel. 2010;89(12):3919-3925. [Link] [DOI:10.1016/j.fuel.2010.06.038]
3. Erkuş B, Sürmen A, Karamangil MI. A comparative study of carburation and injection fuel supply methods in an LPG-fuelled SI engine. Fuel. 2013;107:511-517. [Link] [DOI:10.1016/j.fuel.2012.12.061]
4. Evans RL. Lean-burn spark-ignited internal combustion engines. In: Dunn-Rankin D, editor. Lean combustion. Cambridge: Academic Press; 2008. pp. 95-120. [Link] [DOI:10.1016/B978-012370619-5.50005-4]
5. Ma F, Ding Sh, Wang Y, Wang Y, Wang J, Zhao Sh. Study on combustion behaviors and cycle-by-cycle variations in a turbocharged lean burn natural gas SI engine with hydrogen enrichment. International Journal of Hydrogen Energy. 2008;33(23):7245-7255. [Link] [DOI:10.1016/j.ijhydene.2008.09.016]
6. Zhang F, Grigoriadis KM, Franchek MA, Makki IH. Linear parameter-varying lean burn air-fuel ratio control for a spark ignition engine. Journal of Dynamic Systems, Measurement, and Control. 2007;129(4):404-414. [Link] [DOI:10.1115/1.2745849]
7. Kumar M, Shen T. In-cylinder pressure-based air-fuel ratio control for lean burn operation mode of SI engines. Energy. 2017;120:106-116. [Link] [DOI:10.1016/j.energy.2016.12.091]
8. Perin M, Achek T. Lean burn engines. 22nd SAE Brasil International Congress and Display, 2013 October 7-9, São Paulo, Brazil. Pittsburgh: SAE International; 2013. [Link] [DOI:10.4271/2013-36-0402]
9. Horie K, Nishizawa K, Ogawa T, Akazaki S, Miura K. The development of a high fuel economy and high performance four-valve lean burn engine. International Congress & Exposition, 1992 February 24-28, Detroit, Michigan. Pittsburgh: SAE International; 1992. [Link] [DOI:10.4271/920455]
10. Karvountzis-Kontakiotis A, Ntziachristos L, Samaras Z, Dimaratos A, Peckham M. Experimental investigation of cyclic variability on combustion and emissions of a high-speed SI engine. SAE 2015 World Congress & Exhibition, 2015 April 21-23, Detroit, Michigan, USA. Pittsburgh: SAE International; 2015. [Link] [DOI:10.4271/2015-01-0742]
11. You-cheng S, Min X, Yong G, Yi C, Lei Sh, Kang-yao D. Effects of injection pressure, exhaust gas recirculation and intake pressure on the cycle-to-cycle variations of HCCI combustion. Journal of the Energy Institute. 2016;89(2):293-301. [Link] [DOI:10.1016/j.joei.2015.01.017]
12. Wu B, Wang L, Shen X, Yan R, Dong P. Comparison of lean burn characteristics of an SI engine fueled with methanol and gasoline under idle condition. Applied Thermal Engineering. 2016;95:264-270. [Link] [DOI:10.1016/j.applthermaleng.2015.11.029]
13. Du Y, Yu X, Wang J, Wu H, Dong W, Gu J. Research on combustion and emission characteristics of a lean burn gasoline engine with hydrogen direct-injection. International Journal of Hydrogen Energy. 2016;41(4):3240-3248. [Link] [DOI:10.1016/j.ijhydene.2015.12.025]
14. Reyes M, Tinaut FV, Melgar A, Pérez A. Characterization of the combustion process and cycle-to-cycle variations in a spark ignition engine fuelled with natural gas/hydrogen mixtures. International Journal of Hydrogen Energy. 2016;41(3):2064-2074. [Link] [DOI:10.1016/j.ijhydene.2015.10.082]
15. Wong PK, Wong HC, Vong CM, Xie Z, Huang Sh. Model predictive engine air-ratio control using online sequential extreme learning machine. Neural Computing and Applications. 2016;27(1):79-92. [Link] [DOI:10.1007/s00521-014-1555-7]
16. Pace S, Zhu GG. Transient air-to-fuel ratio control of an spark ignited engine using linear quadratic tracking. Journal of Dynamic Systems, Measurement, and Control. 2014;136(2):021008. [Link] [DOI:10.1115/1.4025858]
17. Nakagawa K, Okamoto K, Shoji F. Development of an air/fuel ratio control system for lean burn gas engines. International Fuels & Lubricants Meeting & Exposition, 1994 October 17-20, Baltimore, Maryland. Pittsburgh: SAE International; 1994. [Link] [DOI:10.4271/942041]
18. Dingli RJ, Watson HC, Palaniswami M, Glasson N. Adaptive air fuel ratio optimisation of a lean burn SI engine. International Spring Fuels & Lubricants Meeting, 1997 May 5-8, Dearborn, Michigan. Pittsburgh: SAE International; 1997. [Link] [DOI:10.4271/961156]
19. Fekete NP, Nester U, Gruden I, Powell JD. Model-based air-fuel ratio control of a lean multi-cylinder engine. SAE Transactions. 1995;104:1455-1467. [Link] [DOI:10.4271/950846]
20. Tunestål P, Hedrick JK. Cylinder air/fuel ratio estimation using net heat release data. Control Engineering Practice. 2033;11(3):311-318. [Link] [DOI:10.1016/S0967-0661(02)00045-X]
21. Shiao Y, Moskwa JJ. Cylinder pressure and combustion heat release estimation for SI engine diagnostics using nonlinear sliding observers. IEEE Transactions on Control Systems Technology. 1995;3(1):70-78. [Link] [DOI:10.1109/87.370712]
22. Arsie I, Di Leo R, Pianese C, De Cesare M. Estimation of in-cylinder mass and AFR by cylinder pressure measurement in automotive Diesel engines. IFAC Proceedings Volumes. 2014;47(3):11836-11841. [Link] [DOI:10.3182/20140824-6-ZA-1003.01602]
23. Kumar M, Shen T. Cyclic model based generalized predictive control of air-fuel ratio for gasoline engines. Journal of Thermal Science and Technology. 2016;11(1):JTST0009. [Link] [DOI:10.1299/jtst.2016jtst0009]
24. Kumar M, Shen T. Estimation and feedback control of air-fuel ratio for gasoline engines. Control Theory and Technology. 2015;13(2):151-159. [Link] [DOI:10.1007/s11768-015-4148-9]
25. Kumar M, Shen T. In-cylinder pressure-based air-fuel ratio control for lean burn operation mode of SI engines. Energy. 2017;120:106-116. [Link] [DOI:10.1016/j.energy.2016.12.091]
26. Das A, Watson HC. Development of a natural gas spark ignition engine for optimum performance. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering. 1997;211(5):361-378. [Link] [DOI:10.1243/0954407971526506]
27. Alger T, Gingrich J, Mangold B, Roberts C. A continuous discharge ignition system for egr limit extension in si engines. SAE Internatonal Journal Engines. 2011;4(1):677-692. [Link] [DOI:10.4271/2011-01-0661]
28. Toulson E, Schock HJ, Attard WP. A review of pre-chamber initiated jet ignition combustion systems. SAE 2010 Powertrains Fuels & Lubricants Meeting, 2010 October 25-27, Unknown Location. Pittsburgh: SAE International; 2010. [Link] [DOI:10.4271/2010-01-2263]
29. Attard WP, Blaxill H. A single fuel pre-chamber jet ignition powertrain achieving high load, high efficiency and near zero NOx emissions. SAE International Journal of Engines. 2012;5(3):734-746. [Link] [DOI:10.4271/2011-01-2023]
30. Attard WP, Bassett M, Parsons P, Blaxill H. A new combustion system achieving high drive cycle fuel economy improvements in a modern vehicle powertrain. SAE 2011 World Congress & Exhibition, 2011 Unknown Date, Unknown Location. Pittsburgh: SAE International; 2011. [Link] [DOI:10.4271/2011-01-0664]
31. Lawrence J, Watson HC. Hydrocarbon emissions from a HAJI equipped ultra-lean burn SI engine. SAE Transactions. 1998;107:6-12. [Link] [DOI:10.4271/980044]
32. Dale JD, Checkel MD, Smy PR. Application of high energy ignition systems to engines. Progress in Energy and Combustion Science. 1997;23(5-6):379-398. [Link] [DOI:10.1016/S0360-1285(97)00011-7]
33. Zuo Z, Pei Y, Qin J, Jia R, Li X, Zhan ZS, et al. Laminar burning, combustion and emission characteristics of premixed methane-dissociated methanol-air mixtures. SAE International Journal of Fuels and Lubricants. 2017;10(2):634-643. [Link] [DOI:10.4271/2017-01-1289]
34. Attard WP, Blaxill H, Anderson EK, Litke P. Knock limit extension with a gasoline fueled pre-chamber jet igniter in a modern vehicle powertrain. SAE International Journal of Engines. 2012;5(3):1201-1215. [Link] [DOI:10.4271/2012-01-1143]
35. Rodrigues Filho FA, Baêta JG, Teixeira AF, Valle RM, De Souza JL. E25 stratified torch ignition engine emissions and combustion analysis. Energy Conversion and Management. 2016;121:251-271. [Link] [DOI:10.1016/j.enconman.2016.05.032]
36. Yousefi A, Gharehghani A, Birouk M. Comparison study on combustion characteristics and emissions of a homogeneous charge compression ignition (HCCI) engine with and without pre-combustion chamber. Energy Conversion and Management. 2015;100:232-241. [Link] [DOI:10.1016/j.enconman.2015.05.024]
37. Biswas S, Qiao L. Prechamber hot jet ignition of ultra-lean H₂/air mixtures: Effect of supersonic jets and combustion instability. SAE International Journal of Engines. 2016;9(3):1584-1592. [Link] [DOI:10.4271/2016-01-0795]
38. Biswas S, Tanvir S, Wang H, Qiao L. On ignition mechanisms of premixed CH4/air and H2/air using a hot turbulent jet generated by pre-chamber combustion. Applied Thermal Engineering. 2016;106:925-937. [Link] [DOI:10.1016/j.applthermaleng.2016.06.070]
39. Bozza F, De Bellis V, Tufano D, Malfi E, Müller C, Habermann K. A quasi-dimensional model of pre-chamber spark-ignition engines. WCX SAE World Congress Experience, 2019 April 9-11, Detroit, Michigan. Pittsburgh: SAE International; 2019. [Link] [DOI:10.4271/2019-01-0470]
40. Shapiro E, Tiney N, Kyrtatos P, Kotzagianni M, Bolla M, Boulouchos K, et al. Experimental and numerical analysis of pre-chamber combustion systems for lean burn gas engines. WCX SAE World Congress Experience, 2019 April 9-11, Detroit, Michigan. Pittsburgh: SAE International; 2019. [Link] [DOI:10.4271/2019-01-0260]
41. Bolla M, Shapiro E, Tiney N, Kyrtatos P, Kotzagianni M, Boulouchos K. Numerical simulations of pre-chamber combustion in an optically accessible RCEM. WCX SAE World Congress Experience, 2019 April 9-11, Detroit, Michigan. Pittsburgh: SAE International; 2019. [Link] [DOI:10.4271/2019-01-0224]
42. Ran Z, Hariharan D, Lawler B, Mamalis S. Experimental study of lean spark ignition combustion using gasoline, ethanol, natural gas, and syngas. Fuel. 2019;235:530-537. [Link] [DOI:10.1016/j.fuel.2018.08.054]
43. Wahbi A, Tsolakis A, Herreros J. Emissions control technologies for natural gas engines. In: Srinivasan KK, Agarwal AK, Krishnan SR, Mulone V, editors. Natural gas engines. Singapore: Springer; 2019. pp. 359-379. [Link] [DOI:10.1007/978-981-13-3307-1_13]
44. Doisneau F, Laurent F, Murrone A, Dupays J, Massot M. Eulerian multi-fluid models for the simulation of dynamics and coalescence of particles in solid propellant combustion. Journal of Computational Physics. 2013;234:230-262. [Link] [DOI:10.1016/j.jcp.2012.09.025]
45. Graboski MS, McCormick RL. Combustion of fat and vegetable oil derived fuels in diesel engines. Progress in Energy and Combustion Science. 1998;24(2):125-164. [Link] [DOI:10.1016/S0360-1285(97)00034-8]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.