Volume 19, Issue 7 (2019)                   Modares Mechanical Engineering 2019, 19(7): 1573-1584 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Hosseinzadeh M, Mirzababaee S, Zamani H, Faezian A, Zarrinkalam F. Modeling of an Evacuated Tube Solar Cooker and Investigation of Weather Parameters Effect. Modares Mechanical Engineering. 2019; 19 (7) :1573-1584
URL: http://journals.modares.ac.ir/article-15-28599-en.html
1- Food Industry Machineries Department, Research Institute of Food Science and Technology, Mashhad, Iran
2- Food Industry Machineries Department, Research Institute of Food Science and Technology, Mashhad, Iran , m.mirzababaee@rifst.ac.ir
3- Mechanical Engineering Department, Engineering Faculty, Mashhad Branch, Islamic Azad University, Mashhad, Iran
Abstract:   (624 Views)
In this study, the performance of an evacuated tube solar cooker analytically investigated. For this purpose, the heat transfer mechanisms in different components of the solar cooker is evaluated. The main aim of this article is to investigate the important parameters of the evacuated tube solar cooker in different weather conditions using the validated analytical model. The studied parameters are: wind speed, ambient temperature, and input solar radiation. The experiments performed at the Research Institute of Food Science and Technology, Mashhad, Iran (Latitude: 36° and Longitude: 59°). The results reveal that the presented analytical model is an accurate model that can be used in the paramedic analysis of the evacuated tube solar cooker. Moreover, in the reference weather conditions, the lost heat contains only 12.22 W of the absorbed solar radiation (137.51 W). Therefore, about 8.89% of the absorbed solar radiation is lost. Based on the results, the temperature of outer surface of the cooker is only 3.64 °C higher than the ambient temperature due to the vacuum between the tubes. In addition, the evacuated tube solar cooker has proper performance in various weather conditions. Increasing the ambient temperature from 5 °C to 35 °C enhances the solar cooker efficiency by 0.65%.
 
Full-Text [PDF 599 kb]   (160 Downloads)    

Received: 2018/12/25 | Accepted: 2019/02/6 | Published: 2019/07/13

References
1. 1- Yazdanpanahi J, Sarhaddi F, Mahdavi Adeli M. Experimental investigation of exergy efficiency of a solar Photovoltaic Thermal (PVT) water collector based on exergy losses. Solar Energy. 2015;118:197-208. [Link] [DOI:10.1016/j.solener.2015.04.038]
2. Al-Shamani AN, Yazdi MH, Alghoul MA, Abed AM, Ruslan MH, Mat S, et al. Nanofluids for improved efficiency in cooling solar collectors - a review. Renewable and Sustainable Energy Reviews. 2014;38:348-367. [Link] [DOI:10.1016/j.rser.2014.05.041]
3. Xue HS. Experimental investigation of a domestic solar water heater with solar collector coupled phase-change energy storage. Renewable Energy. 2016;86:257-261. [Link] [DOI:10.1016/j.renene.2015.08.017]
4. El-Sebaii AA, El-Bialy E. Advanced designs of solar desalination systems: A review. Renewable and Sustainable Energy Reviews. 2015;49:1198-1212. [Link] [DOI:10.1016/j.rser.2015.04.161]
5. Lamnatou C, Papanicolaou E, Belessiotis V, Kyriakis N. Experimental investigation and thermodynamic performance analysis of a solar dryer using an evacuated-tube air collector. Applied Energy. 2012;94:232-243. [Link] [DOI:10.1016/j.apenergy.2012.01.025]
6. Geddam S, Kumaravel Dinesh G, Sivasankar T. Determination of thermal performance of a box type solar cooker. Solar Energy. 2015;113:324-331. [Link] [DOI:10.1016/j.solener.2015.01.014]
7. Schwarzer K, Da Silva MEV. Solar cooking system with or without heat storage for families and institutions. Solar Energy. 2003;75(1):35-41. [Link] [DOI:10.1016/S0038-092X(03)00197-X]
8. Chen CR, Sharma A, Tyagi SK, Buddhi D. Numerical heat transfer studies of PCMs used in a box-type solar cooker. Renewable Energy. 2008;33(5):1121-1129. [Link] [DOI:10.1016/j.renene.2007.06.014]
9. Yadav V, Kumar Y, Agrawal H, Yadav A. Thermal performance evaluation of solar cooker with latent and sensible heat storage unit for evening cooking. Australian Journal of Mechanical Engineering. 2017;15(2):93-102. [Link] [DOI:10.1080/14484846.2015.1093260]
10. Hussein HMS, El-Ghetany HH, Nada SA. Experimental investigation of novel indirect solar cooker with indoor PCM thermal storage and cooking unit. Energy Conversion and Management. 2008;49(8):2237-2246. [Link] [DOI:10.1016/j.enconman.2008.01.026]
11. Muthusivagami RM, Velraj R, Sethumadhavan R. Solar cookers with and without thermal storage - a review. Renewable and Sustainable Energy Reviews. 2010;14(2):691-701. [Link] [DOI:10.1016/j.rser.2008.08.018]
12. Saxena A, Varun, Pandey SP, Srivastav G. A thermodynamic review on solar box type cookers. Renewable and Sustainable Energy Reviews. 2011;15(6):3301-3318. [Link] [DOI:10.1016/j.rser.2011.04.017]
13. Gaur A, Singh OP, Singh SK, Pandey GN. Performance study of solar cooker with modified utensil. Renewable Energy. 1999;18(1):121-129. [Link] [DOI:10.1016/S0960-1481(98)00762-9]
14. Harmim A, Belhamel M, Boukar M, Amar M. Experimental investigation of a box-type solar cooker with a finned absorber plate. Energy. 2010;35(9):3799-3802. [Link] [DOI:10.1016/j.energy.2010.05.032]
15. Guidara Z, Souissi M, Morgenstern A, Maalej A. Thermal performance of a solar box cooker with outer reflectors: Numerical study and experimental investigation. Solar Energy. 2017;158:347-59. [Link] [DOI:10.1016/j.solener.2017.09.054]
16. Saxena A, Agarwal N. Performance characteristics of a new hybrid solar cooker with air duct. Solar Energy. 2018;159:628-637. [Link] [DOI:10.1016/j.solener.2017.11.043]
17. Khorasanizadeh H, Sabzpooshani M, Nazari S. Design, manufacture and testing a solar bread cooker with concentrator. Modares Mechanical Engineering. 2014;13(13):1-13. [Persian] [Link]
18. Kumar A, Shukla SK, Kumar A. Heat loss analysis: An approach toward the revival of parabolic dish type solar cooker. International Journal of Green Energy. 2018;15(2):96-105. [Link] [DOI:10.1080/15435075.2018.1423978]
19. Badran AA, Yousef IA, Joudeh NK, Al Hamad R, Halawa H, Hassouneh HK. Portable solar cooker and water heater. Energy Conversion and Management. 2010;51(8):1605-1609. [Link] [DOI:10.1016/j.enconman.2009.09.038]
20. Harmim A, Boukar M, Amar M. Experimental study of a double exposure solar cooker with finned cooking vessel. Solar Energy. 2008;82(4):287-289. [Link] [DOI:10.1016/j.solener.2007.10.008]
21. Farooqui SZ. A review of vacuum tube based solar cookers with the experimental determination of energy and exergy efficiencies of a single vacuum tube based prototype. Renewable and Sustainable Energy Reviews. 2014;31:439-445. [Link] [DOI:10.1016/j.rser.2013.12.010]
22. Balzar A, Stumpf P, Eckhoff S, Ackermann H, Grupp M. A solar cooker using vacuum-tube collectors with integrated heat pipes. Solar Energy. 1996;58(1-3):63-68. [Link] [DOI:10.1016/0038-092X(96)00024-2]
23. Prompuge W, Sirisamphanwong C. Technical performance for heat storage of solar cooker using vegetable oil as working fluid. Journal of Renewable Energy and Smart Grid Technology. 2018;13(1). [Link]
24. Stumpf P, Balzar A, Eisenmann W, Wendt S, Ackermann H, Vajen K. Comparative measurements and theoretical modelling of single- and double-stage heat pipe coupled solar cooking systems for high temperatures. Solar Energy. 2001;71(1):1-10. [Link] [DOI:10.1016/S0038-092X(01)00026-3]
25. Löf GOG. Recent investigations in the use of solar energy for cooking. Solar Energy. 1963;7(3):125-133. [Link] [DOI:10.1016/0038-092X(63)90038-0]
26. Duffie JA, Beckman WA. Solar engineering of thermal processes. Hoboken NJ: John Wiley & Sons; 2013. [Link] [DOI:10.1002/9781118671603]
27. Bergman TL, Incropera FP, De Witt DP, Lavine AS. Fundamentals of heat and mass transfer. Hoboken NJ: John Wiley & Sons; 2011. [Link]
28. Forristall R. Heat transfer analysis and modeling of a parabolic trough solar receiver implemented in engineering equation solver [Internet]. Golden CO: National Renewable Energy Lab; 2003 [cited 2017 Sep 4]. Available from: http://bit.ly/2DFxqyB [Link] [DOI:10.2172/15004820]
29. Ratzel AC, Hickox CE, Gartling DK. Techniques for reducing thermal conduction and natural convection heat losses in annular receiver geometries. Journal of Heat Transfer. 1979;101(1):108-113. [Link] [DOI:10.1115/1.3450899]
30. Padilla RV, Demirkaya G, Yogi Goswami D, Stefanakos E, Rahman MM. Heat transfer analysis of parabolic trough solar receiver. Applied Energy. 2011;88(12):5097-5110. [Link] [DOI:10.1016/j.apenergy.2011.07.012]
31. Sarhaddi F, Farahat S, Ajam H, Behzadmehr A. Exergetic performance assessment of a solar Photovoltaic Thermal (PV/T) air collector. Energy and Buildings. 2010;42(11):2184-2199. [Link] [DOI:10.1016/j.enbuild.2010.07.011]
32. Wu SY, Guo FH, Xiao L. A review on the methodology for calculating heat and exergy losses of a conventional solar PV/T system. International Journal of Green Energy. 2015;12(4):379-397. [Link] [DOI:10.1080/15435075.2013.840833]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author