Volume 20, Issue 2 (February 2020)                   Modares Mechanical Engineering 2020, 20(2): 437-448 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Jahangiri R, Allahverdizadeh A, Dadashzadeh B, Azimzadegh H. Effect of Viscoelastic-Hetenyi Foundation and Fluid Viscosity on Dynamic Behavior of Fluid Conveying Microtube under Flutter and Parametric Magnetic Resonance. Modares Mechanical Engineering 2020; 20 (2) :437-448
URL: http://mme.modares.ac.ir/article-15-28789-en.html
1- Mechanical Engineering Department, Salmas Branch, Islamic Azad University, Salmas, Iran , r_jahangiri@tabrizu.ac.ir
2- Mechatronics Engineering Department, School of Engineering-Emerging Technologies, University of Tabriz, Tabriz, Iran
3- Mechanical Engineering Department, Salmas Branch, Islamic Azad University, Salmas, Iran
Abstract:   (2515 Views)

In this research, nonlinear transverse vibrations of a fluid conveying microtube under parametric magnetic axial resonance condition is studied. For this purpose, nonlinear governing equations of transverse motion of beam-like microtube are derived using Reddy’s first-order shear deformation theory with considering the effect of fluid viscosity and fluid centripetal acceleration. In this model, nonlinear terms of Hetenyi foundation and nonlinear geometric terms of the Von-Karman theory under magnetic excitations in the presence of fluid flow beyond the flutter instability is considered. In the following, the effects of foundation parameters on the linear flutter specifications of fluid conveying magnetizable microtubes are studied. Then, the nonlinear system behavior for fluid flow velocities more than critical velocity corresponding to the coupling of the first and second vibration modes is studied using multiple scales method. Nonlinear response curves in velocities above critical velocity are obtained and effects of variations of various system parameters including flow velocity, amplitude, and frequency of the magnetic field, Hetenyi foundation stiffness constants, viscosity, and dimensions ratio on the nonlinear response of the system are investigated. Some results indicate that increasing the values of shear stiffness parameter of the Hetenyi foundation has an unstable effect so that with its increasing, the flutter instability occurs at lower frequencies.
 

Full-Text [PDF 1488 kb]   (1605 Downloads)    
Article Type: Original Research | Subject: Vibration
Received: 2018/12/31 | Accepted: 2019/05/19 | Published: 2020/02/1

References
1. PaïdoussisMP. A review of flow-induced vibrations in reactors and reactor components. Nuclear Engineering and Design. 1983;74(1):31-60. [Link] [DOI:10.1016/0029-5493(83)90138-3]
2. Whitney AK, Chung JS, Yu BK. Vibrations of long marine pipes due to vortex shedding. Journal of Energy Resources Technology. 1981;103(3):231-236. [Link] [DOI:10.1115/1.3230843]
3. Ansari R, Norouzzadeh A, Gholami R, Faghih Shojaei M, Hosseinzadeh M. Size-dependent nonlinear vibration and instability of embedded fluid-conveying SWBNNTs in thermal environment. Physica E: Low-Dimensional Systems and Nanostructures. 2014;61:148-157. [Link] [DOI:10.1016/j.physe.2014.04.004]
4. Paidoussis MP, Price SJ, De Langre E. Fluid-structure interactions: Cross-flow-induced instabilities. Cambridge: Cambridge University Press; 2010. [Link] [DOI:10.1017/CBO9780511760792]
5. Paidoussis MP, Li GX. Pipes conveying fluid: A model dynamical problem. Journal of Fluids and Structures. 1993; 7(2):137-204. [Link] [DOI:10.1006/jfls.1993.1011]
6. Gregory RW, Paidoussis MP. Unstable oscillation of tubular cantilevers conveying fluid II. Experiments. Proceeding of Royal Society A Mathematical, Physical and Engineering Sciences. 1966;293(1435):512-527. [Link] [DOI:10.1098/rspa.1966.0187]
7. Marzani A, Mazzotti M, Viola E, Vittori P, Elishakoff I. FEM formulation for dynamic instability of fluid-conveying pipe on nonuniform elastic foundation. Mechanics Based Design of Structures and Machines. 2012.40(1):83-95. [Link] [DOI:10.1080/15397734.2011.618443]
8. Yang X, Yang T, Jin J. Dynamic stability of a beam-model viscoelastic pipe for conveying pulsative fluid. Acta Mechanica Solida Sinica. 2007;20(4):350-356. [Link] [DOI:10.1007/s10338-007-0741-x]
9. Paidoussis MP, Issid NT. Dynamic stability of pipes conveying fluid. Journal of Sound and Vibration. 1974;33(3): 267-294. [Link] [DOI:10.1016/S0022-460X(74)80002-7]
10. Li L, Hu Y. Critical flow velocity of fluid-conveying magneto-electro-elastic pipe resting on an elastic foundation. International Journal of Mechanical Sciences. 2016;119:273-282. [Link] [DOI:10.1016/j.ijmecsci.2016.10.030]
11. Ghazavi MR, Molki H, Beigloo AA. Nonlinear analysis of the micro/nanotube conveying fluid based on second strain gradient theory. Applied Mathematical Modelling. 2018;60:77-93. [Link] [DOI:10.1016/j.apm.2018.03.013]
12. Ghaitani MM, Ghorbanpour Arani A, Khademizadeh H. Nonlinear vibration and instability of embedded viscose-fluid-conveying pipes using DQM. International Journal of Advanced Design and Manufacturing Technology. 2014;7(1):45-51. [Link] [DOI:10.1016/j.compositesb.2012.04.066]
13. Dehrouyeh Semnani AM, Nikkhah Bahrami M, Hairi Yazdi MR. On nonlinear stability of fluid-conveying imperfect micropipes. International Journal of Engineering Science. 2017;120:254-271. [Link] [DOI:10.1016/j.ijengsci.2017.08.004]
14. Wang Y, Wang L, Ni Q, Dai H, Yan H, Luo Y. Non-planar responses of cantilevered pipes conveying fluid with intermediate motion constraints. Nonlinear Dynamics. 2018;93(2):505-524. [Link] [DOI:10.1007/s11071-018-4206-1]
15. Zhang W, Yang J, Hao Y. Chaotic vibrations of an orthotropic FGM rectangular plate based on third-order shear deformation theory. Nonlinear Dynamics. 2010;59(4):619-660. [Link] [DOI:10.1007/s11071-009-9568-y]
16. Amabili M, Farhadi S. Shear deformable versus classical theories for nonlinear vibrations of rectangular isotropic and laminated composite plates. Journal of Sound and Vibration. 2009;320(3):649-667. [Link] [DOI:10.1016/j.jsv.2008.08.006]
17. Fu YM, Ruan JL. Nonlinear active control of damaged piezoelectric smart laminated plates and damage detection. Applied Mathematics and Mechanics. 2008;29(4):421-436. [Link] [DOI:10.1007/s10483-008-0401-4]
18. Wang L. A modified nonlocal beam model for vibration and stability of nanotubes conveying fluid. Physica E: Low-Dimensional Systems and Nanostructures. 2011;44(1):25-28. [Link] [DOI:10.1016/j.physe.2011.06.031]
19. Onawola OO, Sinha SC. A feedback linearization approach for panel flutter suppression with piezoelectric actuation. Journal of Computational and Nonlinear Dynamics. 2011;6(3):031006. [Link] [DOI:10.1115/1.4002391]
20. Guo XY, Zhang W, Yao M. Nonlinear dynamics of angle-ply composite laminated thin plate with third-order shear deformation. Science China Technological Sciences. 2010;53(3):612-622. [Link] [DOI:10.1007/s11431-010-0074-8]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.